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Abstract. The dynamic window approach (DWA) algorithm is a local path planning 
algorithm based on velocity space sampling. Compared with the traditional DWA 
algorithm, this study employs visual sensors to construct a two-dimensional map, 
the relative distance and relative angle are obtained by transmitting each other's 
speed and position information through the mutual communication between AGVs 
(Automated Guided Vehicles). The traditional evaluation function is improved to 
adapt to the local path planning in the case of multiple AGVs, and some special 
cases are processed in detail. Finally, the path planned by the DWA algorithm is 
optimized and tracked via designing model predictive control (MPC) algorithms for 
the AGVs. 
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1. Introduction 

In recent years, with the continuous development of science and technology, autonomous 

mobile robot technology has gradually become mature and reliable, and has been widely 

used in manufacturing, industry, agriculture, warehousing and transportation, medical 

assistance, security inspection and other fields [1]. As autonomous mobile robots 

perform a wide variety of tasks in a variety of environments, the increasing performance 

requirements pose challenges for autonomous mobile robots to adapt to increasingly 

complex environments and task collaboration capabilities. In order to ensure that the 

robot can avoid obstacles while maintaining reliability, completeness, optimal energy 

consumption, optimal speed and other performance indicators to complete tasks in 

strange environments, the path planning capabilities of autonomous mobile robots need 

to be further improved and developed [2]. 

During the development of AGV path planning, numerous scholars have proposed 

many methods, such as Dijkstra [3], A* [4], Ant colony optimization (ACO) [5]. In order 

to cope with more complex and changeable environment, the traditional AGV path 

planning algorithm using global environment information cannot meet the needs. Fox et 
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al put forth dynamic window approach (DWA) in 1997, which transformed the 

conventional path planning to sampling of velocity space [6]. It considers the dynamics 

of the robot to determine the best sampling speed, and controls the robot movement in 

real time with the best linear and angular velocity. Although the DWA algorithm can 

only use part of the environment information for local path planning, it is prone to local 

oscillation or local minimum problems [7]. 

To address some of the shortcomings and deficiencies in the DWA algorithm, many 

researchers have combined the DWA algorithm with other algorithms to improve its 

performance. The DWA algorithm with Virtual Manipulators (DWV) was proposed in 

[8]. This method utilizes virtual manipulators (VM) and environmental information to 

generate velocities for reflective motion, enabling the algorithm to generate obstacle-

avoidable paths that include non-straight line and non-arc paths in environments with 

dynamic obstacles. The DWA algorithm and the Dijkstra algorithm are frequently 

combined. In reference [9], the successful integration of these two algorithms allows 

intelligent obstacle avoidance vehicles to navigate from the planned initial position, 

avoiding obstacles, and reaching the specified destination. Furthermore, in reference [10], 

by utilizing the Dijkstra algorithm and the DWA method to plan the shortest and conflict-

free path, it significantly addresses the path planning problem in small-scale multi-AGV 

systems. By combining the excellent global path search capability of Ant Colony 

Optimization (ACO) with the advantages of the DWA algorithm in local obstacle 

avoidance, the algorithm in reference [11] enhances the navigation, exploration, and 

dynamic obstacle avoidance capabilities of robots in unknown and complex dynamic 

environments. References [12] and [13] applied the DWA algorithm in the A-star 

algorithm to achieve obstacle avoidance, reducing the average path length and enhancing 

the algorithm's performance in complex environments. And in 2019 Zeya Zhu proposed 

a novel method based on fusion of A* algorithm and DWA algorithm, so as to improve 

the global optimization and real-time obstacle avoidance ability of mobile robots[14]. To 

enhance the performance of the DWA algorithm when dealing with dynamic obstacles, 

reference [15] introduces two improved algorithms based on the classical DWA 

algorithm to handle dynamic obstacles. These algorithms are known as the Dynamic 

Window for Dynamic Obstacles (DW4DO) and the Dynamic Window for Dynamic 

Obstacle Trees (DW4DOT). 

In order to ensure the accuracy of the DWA algorithm, it is necessary to construct 

an accurate two-dimensional map to obtain the surrounding environment information. In 

the past, for the construction of environmental maps, visual sensors and inertial sensors 

were usually alone or combined, this technology is called visual simultaneous 

localization and mapping (SLAM) systems. On this basis, Carlos Campos [16] proposed 

ORB-SLAM3, the first system able to perform visual, visual-inertial and multimap 

SLAM with monocular, stereo and RGB-D cameras, using pin-hole and fisheye lens 

models. ORB-SLAM3 is mainly composed of three parts [17]: tracking thread, local 

mapping thread and loop and map merging thread. The sparse point cloud map obtained 

by ORB-SLAM3 is not able to provide navigation for omni-directional robots because 

of the small number and discrete distribution of feature points [18]. Therefore, it is 

necessary to convert a sparse point map into a semi-dense map by adding depth 

information and overlaying each frame of image. Semi-dense point cloud maps require 

a lot of storage space to store data, and with the passage of time, the number of local 

environment map constructions is also increasing, resulting in the space required for 

storing maps will continue to grow [19]. More importantly, the semi-dense point cloud 

map cannot store the interconnection information between various spatial points, and is 
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not directly applicable to path planning and navigation. Therefore, this paper employs 

the approach proposed in references [20] and [21], based on octrees and probabilistic 

occupancy estimation, to model octree maps, addressing the shortcomings of semi-dense 

maps and constructing two-dimensional maps. 

To make the path generated by the DWA algorithm smoother and more controllable, 

this paper follows the approach outlined in references [22-24] and utilizes the Model 

Predictive Control algorithm to take the optimal trajectory as a reference input. By 

controlling the linear velocity and angular velocity, it optimizes the motion posture of 

the AGV. 

Most of the current DWA algorithms can only deal with the path planning problem 

of a single AGV. In view of the above problems, this paper proposes an improved DWA 

algorithm. Main contributions of this paper are the following three aspects: 

1) By converting semi-dense maps to octree maps, the problems of information 

redundancy and storage difficulties are solved. Next, the octree map is flattened and 

transformed into a two-dimensional map suitable for AGV path planning 

2) An improved DWA algorithm with a new evaluation function is proposed to deal 

with the complex working environment in which multiple AGVs perform tasks at the 

same time. New constraints are added to avoid collisions, and special cases that may 

occur are handled.  

3) Combining the DWA algorithm with the MPC algorithm, the MPC algorithm 

optimizes the linear velocity and angular velocity of each local motion path planned by 

the DWA algorithm, so that the AGV can track the planned path as much as possible 

with the minimum control input. 

2. Traditional Dynamic Window Approach Algorithm 

2.1. The Robot Motion Model 

The motion model of AGV can be expressed as 

tttt
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
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                                                  (1) 
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 represents the state transition function of the system under the control 

signal, 
t

  indicates system noise. 

Build the dynamic model: assuming that AGV drive wheel radius is r , the distance 

between the two driving wheels is L ,the sampling period is T , the number of 

revolutions of the motor is n which is calculated by the number of pulses of the 

photoelectric encoder and the reduction ratio of the reducer within the time T .The 

distance traveled by the left wheel and the right wheel are 
l
s
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r
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, the average speeds 

of the left and right wheels are 
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r
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The distance traveled by the wheel is: 
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The average linear velocity of the AGV is: 
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Assuming that the steering angle of the AGV turns   within the time T , and 

T  is small enough, then the angle of rotation   can be approximated: 

L

ss
rl


  sin  (4) 

Therefore, the angular velocity   of the AGV around its trajectory rotation center 

is: 

L

v

T

rl








v
  (5) 

Through the linear velocity v  and angular velocity w  of the AGV, the trajectory 

rotation radius R  of the AGV can be obtained: 
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Assume that the pose of the AGV at time 1t is: 
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Then the pose of the AGV at time t  can be obtained as: 
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2.2. Add Constraints Related to Robot 

In practice, AGV is constrained by its own physical structure, and there is a limit to the 

range of speed. It is defined 
m

V  as the speed set of the maximum speed and the minimum 

speed of the AGV. 

]},[],,[|),{(
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At the same time, due to the limited torque of motor tools such as motors, the 

acceleration of AGV is also limited. Let t  be the time during which the acceleration 'v  

and the angular acceleration '  act, 
c
v

 
and 

c
  represent the current linear velocity and 

current angular velocity of the AGV. 

Define 
d

V  as the set of velocities that can  be achieved within a time interval t . 
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On the actual road ahead, there are many obstacles, and the closer obstacles have 

certain restrictions on the rotational acceleration and translation speed of the AGV.  

),( vdist  
indicates the trajectory corresponding to the speed, that is the closest distance 

of an arc to the obstacle. '
b
v

 
and '

b
w  are the linear velocity braking acceleration and 

the angular velocity braking acceleration. The speed set 
a

V  is defined as a feasible speed 

set whose distance to the obstacle is less than the braking distance after discarding the 

simulated trajectory. 
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Define 
r

V  as the feasible region of the velocity dynamic window, that is, the 

feasible velocity set. 

admr
VVVV 

                                                 
(12) 

2.3. Establish Evaluation Function 

The traditional DWA evaluation function consists of three parts: 

         
1
( , ) ( ( , ) ( , ) ( , ))G v heading v dist v vel v            

                  
(13) 

where ),( vheading  represents the direction angle evaluation function, which is used 

to characterize the degree to which the current direction of the AGV is aligned with the 

target direction. ),( vdist  denotes the gap evaluation function, which is used to 

characterize the distance between the AGV and the closest obstacle on the current 

trajectory. If there is no obstacle on the current trajectory or the distance from the 

obstacle is greater than the set safety distance, set a larger constant value D . ),( vvel  

is the speed evaluation function, which is used to characterize the speed of the AGV on 

the corresponding trajectory. , ,    are the weighting coefficients of the three 

evaluation functions, which are usually constants in traditional DWA algorithms.   
represents the normalization coefficient used to eliminate the influence of different 

measurement units and smooth the trajectory, usually by dividing each item of the current 

trajectory by the sum of each item of all trajectories. 

Different speed combinations are calculated by the evaluation function to obtain the 

corresponding evaluation values. The larger the evaluation value is, the better the 

trajectory performance of the speed combination is. Therefore, the sampling velocity 

combination trajectory with the largest evaluation value in the feasible velocity set is 

selected as the optimal path for local path planning. 

3. 2D Map Construction 

The octree map is a compressible and flexible transformation of the three-dimensional 

map representation, each node in the octree is called a voxel, which is the space contained 

in the cube. The octree is equivalent to the model of the binary tree in the data structure. 

It uses the entire space as the root node, and then continuously divides it. Each parent 

node can be divided into eight child nodes, the child nodes are recursively split again 

until the set octree resolution ratio is reached. The degree of occupation of the child nodes 

in the octree is represented by the probability, and the update process of the occupation 

probability is as follows: 
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where )|(
:1h

znL  is the logarithm of the occupancy probability of a voxel from start to 

time h , 
h
z  denotes the occupancy probability of the n-th child node through the 

observation at time h , )(nP  represents the prior probability, unknown area is 0.5. 

Y. Liu et al. / A Local Path Planning Method of Multi-AGV Systems384



Although the octree map can realize the path and planning of the mobile robot, the 

three-dimensional octree map has a relatively large amount of calculation and poor real-

time performance compared with the two-dimensional map. The redundant 3D 

information is not important for the mobile robot to avoid obstacles and complete tasks 

in the 2D plane. Therefore, the octree map is transformed into a two-dimensional map 

through a three-dimensional oblique projection transformation. The principle of oblique 

projection transformation is given in figure 1. 
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Figure 1. The principle of oblique projection transformation 

The point 
1
P  is the coordinate of a voxel in the octree map, the point 

2
P  is the two-

dimensional map coordinate obtained after oblique projection, and the point 
3
P  is the 

coordinate of the voxel after orthogonal projection. 

Projected Ground Equation: 
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where 
1

  is the angle between 
1
P ,

2
P ,

3
P  and 

2
  is the angle between P ,

3
P ,

2
P . 

According to the projected ground equation, the voxel points in the octree map 

within a certain range from the ground are projected to a two-dimensional plane by 

oblique projection transformation. In the process of oblique projection, the occupancy 

state of the generated map points is updated in real time, and the final two-dimensional 

map of the local environment is obtained. 

4. Evaluation Function Improvement 

In order to make the dynamic window algorithm applicable to more complex 

environments and multiple AGVs. It is necessary to add a function about the distance 

from other AGVs to the evaluation function so that the AGV can stay away from other 

AGVs during driving to avoid collisions. 

Assume that the effective perception radius of the AGV's vision sensor is 
s
r  and the 

communication radius of the wireless communication module is 
c
r , 

sc
rr 2 , the 

relative distance between the current AGV and other AGVs is 
s

d
 
and the relative angle 

is 
s

 . 

The evaluation function of the improved dynamic window algorithm is: 
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where ),( vhide  represents the avoidance evaluation function, which is used to 

characterize the distance between the current AGV and other AGVs,   is the weighting 

coefficient. 

In the process of AGV driving, if there is no AGV within the wireless 

communication range, that is, 
s c

d r , it means that there is no possibility of conflict in 

the surrounding environment of the current AGV, the ),( vhide  function does not work, 

and is set to a larger constant H . 

When other AGVs enter the communication range, but have not been detected by 

the visual sensor, that is,  
s s c
r d r  , it means that there are AGVs in the surrounding 

environment of the current AGV, and there is a possibility of conflict. At this time, the 

hide function will come into play. This function obtains the relative distance 
s

d  and 

relative angle 
s

  of other AGVs and the current AGV through the sensor. From this two 

information, the accurate position of other AGVs relative to the AGV can be obtained. 

Because the time interval is very small, in order to simplify the calculation, it can be 

considered that each trajectory is approximate to a straight line, so as to calculate the 

distance between the current trajectory and other AGVs. After all distances are summed, 

the larger the value, the farther away from other AGVs, and the higher the evaluation 

score, which also requires normalization. 
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where N  represents the number of other AGVs within the current AGV threshold 
c
r , 

si
d  and 

si
  is the relative distance and angle of the ith AGV and the current AGV,   

represents the angle of rotation of the current AGV, and 
c
v  denotes the forward speed 

of the current AGV. 

If the distance between AGVs reaches or is even smaller than the perception range 

s
r  of the visual sensor, that is, 

s s
d r

 
, it means that there is a risk of conflict, and the 

soft constraint of the ),( vhide  function to keep the AGVs away is not enough to 

eliminate this risk. Therefore, at this time, AGVs need to communicate their respective 

motion states, such as speed, direction, and their respective actual achievable speed sets 

d
V

 
through wireless communication modules. 

Using the actual achievable speed set 
d

V  without using the feasible speed dynamic 

window set 
r

V  is to prevent the sudden detection of an obstacle from changing the 

feasible set of the speed dynamic window, leaving room for AGV calculation and 

avoidance. 

After the current AGV obtains the actual reachable speed set 
d

V  of other AGVs and 

the sensor obtains the relative distance 
s

d  and relative angle information 
s

 , the current 

AGV can calculate the area that other AGVs can reach at the next moment, and this area 

can be approximated into a triangle Obstacle area. The current AGV compares the 
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triangular area with the feasible set of its own speed dynamic window, discards the speed 

sampling of the overlapping area, and selects a path from the remaining safe area to avoid 

collision and conflict between AGVs. 

In the face of some special circumstances that may arise, additional responses and 

adjustments are required. 

When there are multiple AGV robots passing through the intersection, because the 

surrounding terrain limits the change of angular velocity, the feasible set of speed 

dynamic windows of the two may lead to large-scale overlap, which is not conducive to 

staggered passing. When this happens, AGVs with lower task priorities will slow down 

or even stop themselves, thereby narrowing the feasible set of speed dynamic windows, 

allowing AGVs with higher task priorities to pass quickly. 

When two AGVs are facing each other on a narrow straight road, if the width of the 

straight road cannot allow the two vehicles to pass in parallel, congestion will occur, 

resulting in neither vehicle being able to pass. When there is an impassable area ahead, 

the AGV with lower task priority will turn in place and drive out of the impassable area, 

while the AGV with higher priority can continue to move along the straight road. 

5. Evaluation Function Improvement 

Controlling the input of the AGV through the MPC model prediction algorithm can 

enable the AGV to better track the optimal trajectory. The MPC algorithm takes the 

optimal trajectory planned by the DWA algorithm as the reference input, and controls 

the AGV's pose during the actual driving process by controlling the AGV's linear 

velocity and angular velocity. The ultimate optimization goal of MPC is to optimize the 

input of AGV linear velocity and angular velocity, so that the path trajectory of the 

reference input can be tracked as much as possible under the smallest input. 

The control signal is: 

 Tvu                                                               
(18) 

Convert the motion model of the AGV into discrete form: 
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According to the discrete form of the AGV motion model, the incremental equation 

can be obtained: 
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Set the prediction step size to P  and the control step size to M . 
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where: 

 ( ) ( ) ( 1)
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In order to make the difference between the actual driving trajectory of the AGV 

and the optimal trajectory route of the reference input as small as possible, the driving 

route is smoother, and the tracking ability is stronger, a cost function needs to be 

established to constrain the trajectory deviation value and the change range of the control 

input. 
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where Q  and R  are the weight matrix, )(kY
ref   

are the output reference trajectory,  

)1(  nku
 
are the change values of the input at the time of 1 nk , 

min
u  and 

max
u

 
are the thresholds of the control input, 

min
u  and 

max
u  are the thresholds of the control 

input changes. 

6. Simulation 

In the context of the aforementioned content, several experiments are presented in this 

chapter to demonstrate the effectiveness of the proposed strategies. The similation 

environment is MATLAB R2021a and Windows 10-64 bit system (CPU AMD Ryzen 7 

5800H and RAM 16 GB). 

To validate the effectiveness of the improved DWA algorithm proposed in this paper, 

we construct random obstacles and introduce three agents to compare the performance 

of the proposed algorithm with the original DWA algorithm under the same environment 

and parameters. Here are the coordinates for the randomly generated ten circular 

obstacles with a radius of 0.5 within the range of x ∈ [1, 9] and y ∈ [1, 9]: [0,2], [2,4], 

[2,5], [4,2], [5,4], [5,6], [5,9], [7,9], [8,8], [8,9]. Agent 1 moves from the starting point 

[10, 8] to the target point [0, 0], Agent 2 moves from the starting point [9, 10] to the 

target point [4, 0], Agent 3 moves from the starting point [7, 8] to the target point [2, 0]. 

Evaluation function parameter values: Weight of heading score 0.5  , weight of 

obstacle distance score 0.2  , weight of velocity score   = 0.1, Weight of avoidance 

score 0.2  . In figure 2, it can be observed that both algorithms have the same initial 
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states for the agents and share the same target points. In figure 3, the left image clearly 

illustrates that the original DWA algorithm fails to handle scenarios with multiple agents, 

resulting in collisions between the agents during the path planning process and ultimately 

leading to task failure. On the other hand, the right image demonstrates the improved 

DWA algorithm, which takes the relative distances between agents into account. It 

actively avoids collisions by moving away from nearby agents when there is a potential 

risk of collision. As a result, the improved algorithm successfully achieves the task 

objective without any collisions. 

In certain specific environments, the improved DWA algorithm also demonstrates 

its superiority over the original DWA algorithm. In figure 4, the special case is a narrow 

straight path with obstacle distribution as follows: [3,3.75], [3,6.25], [4,3.75], [4,6.25], 

[6,3.75], [6,6.25]. Agent 1 moves from the starting point [7, 5.5] to the target point 

[0, 4.5], Agent 2 moves from the starting point [0, 4.5] to the target point [7.5, 5.5].  

In figure 5, the onther special case is a crossroad with the following distribution of 

obstacles:  [3,3.75], [3,6.25], [4,2.75], [4,3.75], [4,6.25], [4,7.25], [6,2.75], [6,3.75], 

[6,6.25], [6,7.25], [7,3.75], [7,6.25]. Agent 1 moves from the starting point [5, 8] to the 

target point [1, 4.5], Agent 2 moves from the starting point [2, 4.5] to the target point 

[8.5, 5.5].  

 
Figure 2. At t=0, the initial states of both algorithms are the same. 

 

Figure 3. The left figure shows the original DWA algorithm where collision occurs between agent 1 and agent 

3 at 40s, while the right figure represents the improved DWA algorithm successfully completing the task. 
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Figure 4. The left image shows that in the original DWA algorithm, there is a collision between the two agents 

as they pass through the narrow straight path. However, in the right image, the improved DWA algorithm 

allows one agent to decelerate and wait, allowing the other agent to pass through first, thus completing the task 

without a collision. 

 

Figure 5. The left image shows that the original DWA algorithm leads to a collision between the agents while 

crossing the crossroad. On the other hand, the right image demonstrates that the improved DWA algorithm 

allows the lower-priority agent to wait at the intersection for the higher-priority agent to pass, thus successfully 

completing the task. 

7. Conclusions 

This paper proposes an improved DWA path planning algorithm combined with MPC 

algorithm, which can be applied to the working environment where multiple AGVs work 

together. According to the vision sensor and displacement sensor carried by the AGV 

itself, ORB-SLAM3 is used to construct a point cloud map, which is converted into an 

octree map, and then processed to construct a two-dimensional map suitable for path 

planning. In order to plan the path of multiple AGVs at the same time, this paper 

improves the original evaluation function, takes the relative distance and relative speed 

between different AGVs as a new evaluation index, and makes additional restrictions 

and countermeasures for possible collision situations. For possible special situations, 

corresponding solutions are also proposed. Finally, the path planned by the DWA 

algorithm is optimized by combining the MPC algorithm, so that the AGV can track the 

specified path with as little control input as possible. 
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