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Abstract. Unstable processes plus time delays are very frequent in the industry. PI-
PD controllers are used for controlling unstable industrial operations as they give 
more robust performance relative to PID controllers. However, designing the 
parameters of PI-PD controllers is quite difficult. Recently, the centroid of the 
stability region based on the Weighted Geometrical Center (WGC) approach has 
been proposed for overcoming the tuning difficulty of the controller. Nevertheless, 
the current version of WGC available in the literature is time-consuming. Thus, this 
paper proposes new simple tuning rules to implement WGC when it is used for 
computing the parameters of the PI-PD controller for controlling unstable processes 
with time delays. An isothermal continuous stirred tank reactor is used for 
evaluating the performance of the proposed method.       
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1. Introduction 

PI-PD controllers have been proposed as a method for overcoming the weaknesses of 
PID controllers and enhancing performance when controlling unstable industrial 
operations [1]. The PI-PD regulator is constructed using inner and outer feedback loops. 
The PD regulator is utilized in the inner loop while the PI regulator is employed in the 
outer loop [2]. The PI-PD regulator's primary benefit is that, relative to the PID 
controller, it gives improved closed-loop performance [3]. However, it is not easy task 
to design these parameters [4]. The PI-PD controller is therefore disadvantageous and 
has limited application because of the complexity of calculating these parameters [5].    

Recently, calculating all the stabilizing settings of the PID/PI-PD controllers has 
gained increasing importance [6]. The Stability Region (SR) centroid, in particular, has 
been deemed as a suitable adjusting point for getting the PID/PI-PD controller settings 
[7-8]. Studies show that the centroid-calibrated controller's closed-loop performance is 
satisfactory [9-10]. Using the centroid to determine the control parameters can also lead 
to enhanced set-point tracking and fast disturbance rejection because it is placed in a safe 
zone away from every point of the Stability Boundary Locus (SBL). Moreover, the 
robustness against parameter variations can considerably be improved by employing 
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the centroid for tuning purposes [11]. The centroid has also been regarded as a good 
option for overcoming the challenge of calculating the four adjusting variables of the 
PI-PD regulator [12]. In this respect, the Weighted Geometrical Center (WGC) 
technique for calculating the gains of the PI-PD regulator has recently been released 
[12-13]. The WGC method's primary drawback, however, is that it uses every point 
along SBL in accordance with a preset step size, which could result in a significant 
computing burden [10], particularly for a minute step size. It is critical to note that minute 
step sizes offer more exact outcomes since they allow for the usage of extra SBL points.  
To solve the above problem of WGC, an analytical version of WGC called AWGC has 
recently been revealed [14]. However, AWGC has been applied only for controlling 
integrating processes. Thus, the main goal of this work is to extend AWGC to be used 
for controlling unstable processes.  The main contributions of this work can be 
summarized as follows: 

1- Expanding AWGC method [14] to be employed for controlling unstable 
processes which are quite difficult to be controlled.  

2- Providing simple running rules for tuning the parameters of the PI-PD controller 
which might improve the applicability of this controller on the industrial level 
as it reduces the tuning procedures required by control engineers.  

The rest of this paper is organized as follows. The second section gives background 
about the PI-PD controller and the equations of the stability region. The next section is 
allocated for explaining the proposed method. A simulation example is given in the 
fourth section. The last section is devoted to conclusions.           

2. Background 

This section will be broken into two subsections. Background about the PI-PD controller 
is given in the first one. On the other hand, the stability reign equation is given in the 
second one.    

2.1. PI-PD Controller 

In a conventional closed-loop system, each of the PID regulator's acts is carried out in 
the forward route. This could result in a derivative kick which is an undesirable 
phenomenon [15]. To address this problem, the PD component of PI-PD regulators is 
transferred to an interior feedback loop to shift the process transfer function’s poles to a 
more advantageous position where it could be governed more satisfactorily by the PI 
component performing in the onward route [2], [16]. Figure 1 depicts the architecture of 
the PI-PD regulator. The internal loop is composed of the transfer functions of the 
manufacturing process and the PD controller, whereas the external loop is composed of 
the PI regulator's transfer function and the inner loop's closed-loop transfer function. The 
PI-PD regulator’s transfer functions ( )

PD
C s  and ( )

PI
C s  are expressed below: 

(s)
PD f d

C k k s                                                (1)  

(s) i

PI p

k
C k

s
                                                 (2) 
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 In above equations, fk , 
d
k   , 

p
k  , and 

i
k  are the modifiable PI-PD regulator gains.  To 

get the controller's normalized representations, s Ts  has been inserted into the 

equations (1) and (2), yielding the following formulas: 

   

( )
( )

f d

PD

k T k s
C s

T



                                                      (3)  

( )
( )

( )

p i

PI

k s k T
C s

s



                                                      (4)   

The above normalized forms will be used later for deriving the equations of the 

stability region.  

 

Figure 1. PI-PD controller. 

2.2. Equations of the Stability Region 

Several industrial applications such as industrial reactors are classified as unstable 

processes. Obtaining the required closed-loop performances for controlling such 

applications necessitates significant work on the part of control engineers due to the fact 

that unstable manufacturing operations have unstable poles at the right side of the S-

plane. Furthermore, time delays influencing industrial processes may degrade the system 

performance by increasing system uncertainty [6]. In this paper, a SISO system is of 

concern. Also, the following low-order transfer function is utilized for describing 

unstable manufacturing operations with time delays:  

( ) 0 & 0 & 0
1

s

Ke
G s K T

Ts







    



                           (5)    

In the above equations, T , K , and   stand in for the time constant, process gain, 

and time delay, respectively. The normalized form of equation (5) is given below: 

( )
1

s

Ke
G s

s







                                                  (6)    

The Generalized Stability Region (GSR) is determined using the normalized 

presentation of the regulator's and industrial process's transfer functions.  The 

characteristic formula of the inner loop, which is displayed in figure 1, is calculated using 

the process transfer function, ( )G s , stated in expression (6) and the transfer function of 

the PD regulator, ( )
PD

C s , provided in equation (3) as follows: 

( ) 1 ( ) ( ) ( ) (1 ) 1
s sd

PD f

Kk
s C s G s s e s Kk e

T

  

                          (7)   

Applying similar steps to that given in Refs [6], [17] on equation (7), the equations 

of the inner loop's SBL, ( / , , )
d f

SBL Kk T Kk  , are sated as below: 
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1
cos( ) sin( )d

Kk

T
 



                                                 (8)  

cos( ) sin( )fKk                                                   (9)   

Equation (8), at 0  , is not defined. As a result, since SBL in this case has a 
discontinuity, and thus 0   should not be employed in the computations of the 
stabilizing controller parameters. Yet, this has no impact on the accuracy of these 
calculations [18]. The right sides of equations (8) and (9) may be seen to be unrelated to 
the system variables i.e.,  , K , and T . SBL is hence also known as the generalized 
SBL which can be abbreviated as GSBL. Equations (8) and (9) is used for constructing 
GSBL by varying the values of   in the limit [ , ]

PD
   for a particular number of  . 

With the intention of preventing division by 0 in equation (8),   should be chosen to be 
an extremely small positive number. The upper limit of the bound [ , ]

PD
   i.e., 

PD
 , is 

obtained by solving the equation cos( ) sin( ) 1    . The outer loop’s stable 

characteristic equation, computed by (s) 1 ( ) ( ) ( ) ( )
PD PI

C s G s C s G s    , is 

mathematically formulated using a random calibration point ( , )
PD PD PD

C x y  taken from 

the inner loop's GSR (where 
PD
x  and 

PD
y  are supposed to be known) as expressed 

below:  
2(s) (1 ) ( 1 )s s s s

PD PD p i
x e s y e Kk e s KTk e

      

                              (10)   

here, /
PD d
x Kk T  and 

PD f
y Kk .  Applying similar steps to that presented in Refs 

[6], [17] on equation (10), the equations of ( , , )
p i

GSBL Kk KTk   are determined as 

follows: 
cos( ) sin( )

p PD
Kk y                                                (11)  

2 2
cos( ) sin( )

i PD
KTk x                                             (12)  

By swapping   in the range [0, ]
PI

  , where 0
PI

   is the first root resulting from 

solving: 2 2
cos( ) sin( ) 0

PD
x       , ( , , )

p i
GSBL Kk KTk   is constructed using 

equations (11) and (12). In summary, the outer loop's GSR lies in the area between 
( , , )

p i
GSBL Kk KTk   and 0

i
KTk   [6].   

3. Proposed Method 

For controlling integrating processes, the following AWGC equations are proposed 
[14]:   

1
( )

b

AWGC

a

x f x dx
b a





                                            (13) 

1
( )

2( )

b

AWGC

a

y g x dx
b a





                                           (14)  

In the equations above, ( )f x R  and ( )g x R  are real functions which 

correspondingly denote the equations of SR on the x-axis and y-axis. In this paper, 
equations (13) and (14) are used to obtain tuning rules to adjust the parameters of the 
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PI-PD controller, which is used for controlling unstable processes. It should be observed, 
however, that the term (1 / ) sin( )   of equation (8) precludes the integral action shown 

in equation (13) from being done mathematically. To solve this problem, the equations 

)
1 1

( cos( ) sin( )
( )

PD

PD

d




  

  

 



  and cos( ) sin( ) 1     are numerically 

solved for a step of 0.05 of   in the range [0.1,1.9]  . Consequently, the centroid's x-

axis coordinate of the inner loop, 
_AWGC PD

x  , for the unstable process given in equation 

(6) is computed as stated below:              

5 4 3 2

_

0.0002921 +0.0006498 +0.007269 +0.03707

+ 0.3869 4.456e-06
AWGC PD
x

   




 


 
           (15) 

To calculate the centroid on the y-axis coordinate of the inner loop’s SR, equation 
(9) should be modified to be cos( ) sin( ) 1fKk      . This is because there is a 

shift by 1 on the y-axis of SR. Next, the integral action given in (14) is applied to the 
modified equation to get the following mathematical expression:  

_

2

1

sin( )

(cos( ) sin(

i

) 1)
2( )

cos( ) s n( )

PD

P

D

AWG

D

PD PD PD PD

C P

P

D
y

d




   

 

    





 

 
 
 
 

  











                 (16)   

By numerically solving the equation cos( ) sin( ) 1     for a step of 0.05 of   

in the range [0.1,1.9]  , the value of 
PD

  in the expression above is determined as 

shown below: 

2

4 3 2

123 348.2  +829.6
 0.1 0.6

 + 51.28 63.08  + 265 0.04563
PD

 

 

   



  

 

              (17) 

8 7 6 5 4

3 2

0.4253 3.184 8.336 3.734 27.94
0.6 1.9

73.21 87.78 58.6 20.27
PD

    

 

  

     
          

(18)   

The centroid point of the outer loop, 
_ _

( , )
AWGC PI AWGC PI
x y , are derived by applying the 

integral actions given in formulas (13) and (14) on formulas (11) and (12), 
correspondingly. As a result, the following expressions are obtained:     

_ _2

sin( ) cos( ) sin( )

AWGC PI AWG

PI PI

C

PI PI

PI
x x

   







 



 
   
 

              (19) 

       2 2

3 3

2

_

_ 3

3 3 6 sin (3 ) cos6

6

PI PI PI PI

AWGC PD

AWGC

P

I

I

I

P

P

x

y

     





  





    
  
   





 
 
 

 

         (20) 
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In the equation above, 
PI

  can be linked to   by numerically solving the equation 

2 2
cos( ) sin( ) 0

PD
x         in the range [0.1,1.9]   with a step of 0.05   as 

stated below: 

2

4 3 2

79.22 179.2  +29.16
 0.1 0.6

32 +117.4  + 18.51 0.002902
PI

 

 

   

 
  

 

            (21) 

7 6 5 4

3 2

0.8648 + 7.893 31.1 +68.94  
0.6 1.9

93.93 + 80.42 42.32  +12.19
PI

   

 

  

  
      

            (22)  

Figure 2 shows the steps needed to compute the PI-PD regulator's settings for 

unstable industrial operations using the proposed AWGC method.  

 

Figure 2. A flowchart for computing the parameters of the PI-PD controller using the proposed method 

4. Simulation Example 

A transfer function of an unstable industrial operation of the form 
20( ) 3.433 / (103.1 1)s

G s e s


   is used to describe an isothermal continuous stirred tank 

reactor [10]. The normalized dead time,  , of this transfer function is computed to be 

0.1940  . This value is adopted for computing the regulator gains via the provided 

AWGC technique by applying the procedures given in figure 2 to get the following 

settings: 0.9284fk  , 2.2974
d
k  , 0.1731

p
k   , and 0.0093

i
k  . The proposed 

method is compared to the PI-PD regulator of Kaya [19] and the ACCSRTR method [6], 

[17]. The step outcomes and related control efforts for all analyzed approaches to a unit 

step (given at t=0 s) and a nonnegative unity disruption introduced into the closed-loop 

structure at t=200 s are shown in figure 3 for the nominal case. Figures 4 (a) and (b) show 

the results for process parameter variations of +15% and -15%, correspondingly. To 

assess the endurance of the various techniques versus measurement noise, a band-limited 

white noise with an energy level of 0.00001 is included in the measured signals. Figure 5 
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depicts the system outputs under the measurement noise and the related control efforts. 
The following can be deduced from the above-mentioned figures: 

1- ACCSRTR and the method of Kaya give faster transient response than the 
proposed method. However, they consume more control energy relative to the 
proposed method as clear from figure 3 (b).    

2- In regard to robustness against process parameter fluctuations and measurement 
noise, AWGC appears to perform slightly better than ACCSRTR.     

3- In comparison to the presented approach, Kaya's method [19] seems to yield 
less robust behavior in the face of parameter variations and measurement 
noise.   

      

Figure 3. Nominal case results (a) Closed-loop system   Figure 4. Closed-loop system outputs for outputs, (b) 

Control efforts.                                                                  variations in system parameters (a) +15%, (b) -15% 

 
Figure 5. Closed-loop system outputs under measurement noise with a power of 0.0001 (a) Closed-loop system 

outputs, (b) Control efforts 

5. Conclusions 

In this paper, AWGC has been expended for tuning the parameters of the PI-PD 
controller for regulating unstable processes.  Simple tuning rules were proposed to save 
the control engineer's time and overcome the PI-PD controller's tuning difficulty. 
Results showed that the proposed method is robust against parameter variation and 
measurement noise. Thus, it is convenient for applications that are working under severe 
conditions.               
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