
Sudoku Solver: A Comparative Study of 

Different Algorithms and Image Processing 

Techniques 

Swati Hira, Neha Bhagwatkar1, Kartik Agrawal, and Nikunj Loya 
Shri Ramdeobaba College of Engineering and Management, Ramdeo Tekdi, 

Gittikhadan, India 

Abstract. This research paper aims to explore the different types of algorithms 
used for solving Sudoku puzzles and provide a comparative analysis of their 
efficiency and accuracy. Sudoku puzzles have become increasingly popular in 
recent years, and many people enjoy the challenge of solving these puzzles. 
However, for more difficult puzzles, finding a solution can be time-consuming and 
require a lot of trial and error. In this paper, we will examine the Backtracking 
approach, Backtracking + Hashmap approach, Constraint Propagation Algorithm, 
and Dancing Links Algorithm for solving Sudoku puzzles. We will also provide a 
detailed analysis of the advantages and disadvantages of each algorithm, based 
on their performance on different levels of difficulty of Sudoku puzzles. We will 
also compare the efficiency and accuracy of these algorithms to determine which 
approach is best suited for solving Sudoku puzzles. The proposed approach will be 
of interest to puzzle enthusiasts, researchers in the field of artificial intelligence, 
and anyone interested in exploring different approaches to solving complex 
problems using algorithms. 

Keywords. Sudoku puzzle; image processing; backtracking; constraint 
propagation. 

1. Introduction 

SUDOKU is a popular logic-based puzzle game that has gained immense popularity 

in recent years. The game involves filling a 9 × 9 grid with digits from 1 to 9, 

in such a way that each digit appears only once in each row, column, and 3 × 3 

sub-grid. The puzzle is usually presented with some cells pre-filled, and the 

challenge is to fill in the remaining cells while adhering to the Sudoku constraints. 

While Sudoku puzzles are simple to understand, solving them can be quite 

challenging, even for experienced players. In recent years, researchers and puzzle 

enthusiasts have developed various algorithms to solve Sudoku puzzles efficiently. 

These algorithms employ different techniques, including backtracking, constraint 

propagation, and dancing links, among others, to find the solution to a given 

puzzle. However, there is no consensus on the most efficient algorithm to solve 

Sudoku puzzles. In this research paper, we will explore the approach where a 

 
1  Correspondence author, Neha Bhagwatkar, Shri Ramdeobaba College of Engineering and Management; 

Email: bhagwatkarns@rknec.edu 

Applied Mathematics, Modeling and Computer Simulation
C.-H. Chen et al. (Eds.)

© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/ATDE231062

1186



Sudoku solver takes input as an image, converts it into a 2D array, and then 

provides a solution to the Sudoku puzzle using four different algorithms. These 

algorithms are backtracking, backtracking with a hashmap, constraint propagation, 

and dancing links. In this research paper, we will implement all four of these 

algorithms and evaluate their performance in solving Sudoku puzzles. We will also 

conduct a comparative analysis of these algorithms to determine their efficiency in 

solving Sudoku puzzles. Our experiments will be conducted using Python, and we 

will use various performance metrics to compare the efficiency of the four 

algorithms. We will also analyze the strengths and weaknesses of each algorithm and 

provide insights into the type of Sudoku puzzles each algorithm is best suited for. In 

conclusion, this research paper provides a comparative analysis of four different 

algorithms used to solve Sudoku puzzles. Our analysis provides insights into the 

strengths and weaknesses of each algorithm and provides guidance on which algorithm 

to use for different types of Sudoku puzzles. Overall, this research paper contributes to 

the growing body of literature on Sudoku puzzle solving and provides a valuable 

resource for researchers and puzzle enthusiasts alike. 

 

Figure 1.   An incomplete sudoku. 

2. Literature Review 

2.1. Research Papers on Sudoku Solvers 

A lot of research has been done in this field. Following are some of the research 

papers which will be discussed for a better understanding of the importance and the 

algorithms used to solve sudoku puzzles. 

A paper by Maji A K and Pal R K, 2014 [1] provides an overview of the 

traditional backtracking algorithm used to solve Sudoku puzzles. The authors then 

propose a modified version of the backtracking algorithm that uses a mini grid- based 

approach to keep track of the values already present in the mini grids, rows, and 

columns of the puzzle. This approach aims to reduce the number of backtracking steps 

required to solve the puzzle by limiting the possibilities of values that can be placed in 

a particular cell. The proposed algorithm also incorporates a heuristic approach to 

prioritize the selection of cells that are likely to lead to a faster solution. The heuristic 

function evaluates the number of possible values that can be placed in a particular cell 

S. Hira et al. / Sudoku Solver: A Comparative Study of Different Algorithms 1187



and selects the cell with the fewest possibilities. This approach aims to reduce the 

search space of the algorithm and speed up the process of finding a solution. The 

results show that the mini grid-based backtracking algorithm outperforms the 

traditional backtracking algorithm in terms of the number of steps required to solve 

the puzzles. 

Wang C et al. [2] proposes a novel evolutionary algorithm for solving Sudoku 

puzzles that utilize both global search and local search strategies. The authors describe 

their proposed algorithm, which uses a genetic algorithm to generate an initial 

population of candidate solutions and then applies a local search approach to improve 

the quality of the solutions. The local search approach used in the proposed algorithm 

operates on both columns and sub-blocks of the puzzle. It involves swapping the values 

in the same column or sub-block to improve the quality of the solution. The authors 

also propose a modified version of the local search approach that incorporates a 

simulated annealing strategy to avoid getting stuck in local optima. 

The proposed algorithm in “A Novel Automated Solver for Sudoku Images” by 

Gupta K, Khatri S and Khan M H [3], uses image processing techniques and computer 

vision algorithms to extract the puzzle grid from an input image and then applies a 

combination of rule-based and optimization- based approaches to solve the puzzle. It 

consists of several stages such as image pre-processing, grid extraction, digit 

recognition, and puzzle solving. The image pre-processing stage involves applying 

various filters and transformations to enhance the image quality and improve the 

accuracy of the subsequent stages. The grid extraction stage involves using edge 

detection and line segmentation algorithms to identify the boundaries of the puzzle grid 

and extract it from the input image. The digit recognition stage involves using a 

convolutional neural network (CNN) to recognize the digits in each cell of the grid. 

The puzzle-solving stage uses a combination of rule-based and optimization-based 

approaches to solve the puzzle. The rule-based approach involves applying the basic 

Sudoku rules to fill in the cells that have a unique solution. The optimization-based 

approach involves using a genetic algorithm to search for the optimal solution by 

iteratively generating and evaluating candidate solutions. 

The proposed algorithm in “A hybrid backtracking and pencil and paper sudoku 

solver” by Nwulu, Evarista and Bisandu, 2019 [4] aims to improve the efficiency of the 

backtracking algorithm by using human-like reasoning and deduction to reduce the 

number of backtracking steps re- quired to solve the puzzle. The puzzle representation 

stage involves representing the puzzle in a format that can be easily manipulated by the 

algorithm. The human-like reasoning stage involves using logic and deduction to fill 

in cells that can be uniquely determined based on the rules of Sudoku. This stage is 

inspired by the traditional pencil-and- paper method used by humans to solve Sudoku 

puzzles. The backtracking stage involves applying a backtracking algorithm to fill in 

cells that cannot be uniquely determined using the human-like reasoning stage. 

However, unlike traditional backtracking algorithms, the proposed algorithm uses 

information gathered from the human-like reasoning stage to guide the 

backtracking process and reduce the number of backtracking steps required. The 

solution validation stage involves checking the solution obtained from the algorithm 

to ensure that it satisfies the rules of Sudoku. The authors also describe several 

optimizations and heuristics that can be used to further improve the efficiency of the 

algorithm. 

The research by Gummadi Sai Dheeraj, Lakshmi K B V, Anjan Krishna K. 2020 

[5] includes a system that builds up a program to identify the Sudoku region, tackle it 

S. Hira et al. / Sudoku Solver: A Comparative Study of Different Algorithms1188



and print the answer with expanded reality on a screen. They move just the areas 

of numbers within the grid and distinguish if encompass a number or are unfilled, 

if variety is present no action is completed but if the matrix position is vacant, 

consequently zero is put. The flow consists of steps like loading the input image, 

localizing the sudoku puzzle in the image, localizing each cell in the sudoku board 

location, determining if the digit exists, and if yes OCR it, given cell location and digit 

solves the sudoku using backpropagation and CNN and display the image. The solution 

depicted overwrites the input image. 

Using computer vision and deep learning, the authors, Syed, Azhar and Merugu, 

Suresh and Kumar, Vijaya (2020) [6] suggest a superior method for identifying 

Sudoku puzzles and using constraint programming and backtracking to solve them 

using an algorithm to present the finished puzzle as augmented reality. Along with this 

study, a performance comparison with earlier work is offered. Methods: Image 

categorization alone won’t be enough to apply augmented reality to the Sudoku 

puzzle since the solved puzzle must be displayed on top of the area of the 

unsolved puzzle in the original image. In order to accomplish puzzle detection, they 

used the CNN and Object Localization algorithms. After the detection, they saved the 

detected values in each 9 × 9 cell, solved the puzzle using a constraint programming 

and backtracking technique, and then filled the discovered empty cells with the correct 

puzzle solution. 

‘Sudoku Solving Using Patterns and Graph Theory’, 2021 [7] presents a novel 

approach to solving Sudoku puzzles using pattern recognition and graph theory 

techniques. The authors describe their proposed approach, which involves using 

pattern recognition techniques to identify recurring patterns in the Sudoku grid. By 

directing investigations and arranging the perceptions, an awesome strategy for 

incredibly quick Sudoku solving using recognition of various examples like Naked 

Singles, Hidden Singles, Locked Candidates, and so forth is examined. Evaluation of 

the method for solving random arrangements of sudoku puzzles reveals that the rate 

of resolution can be greatly accelerated. Diagram shading is also the greatest way to 

understand the simple method to solve the Sudoku, thus we consider this relationship 

when setting up the Sudoku chart. By conducting experiments and plotting the results, 

a revolutionary method for solving Sudoku very quickly that makes use of the 

recognition of different patterns, such as Naked Singles, Hidden Singles, Locked 

Candidates, etc., is reviewed by Rohit Iyer, Amrish Jhaveri, Krutika Parab in their 

research “A Review of Sudoku Solving using Patterns”, 2013 [8]. The rate of solving 

can be significantly increased, according to an analysis of the method for solving a 

random set of Sudoku puzzles. However, just a few patterns have been identified 

and solved, and additional patterns may be able to be found and solved to increase 

the rate at which Sudoku can be solved. The performance of solvers was 

calculated and tested on a set of 1000 puzzles. 

In the paper by Musliu N  and Winter F, 2017 [9], a novel local search 

method based on the Sudoku min-conflicts heuristic is presented. Additionally, within 

the context of iterated local search, they have presented a novel hybrid search method 

that makes use of constraint programming as a perturbation tool. They have 

empirically tested the approaches against difficult Sudoku benchmarks and have 

reported advantages over cutting-edge answers. They also used their strategy on 

another difficult scheduling problem to demonstrate the generalizability of the 

suggested methodology. The outcomes demonstrated that the suggested approach is 

reliable in a different issue domain. 

S. Hira et al. / Sudoku Solver: A Comparative Study of Different Algorithms 1189



In the case of quantum computing, the problem can be solved in miraculous 

O(log(n)) time complexity. To answer the sudoku, quantum computing techniques like 

superposition and entanglement were employed by Varun Singh, Varun Sharma, 2023 

[10]. Quantum computers have recently demonstrated promise as a cutting-edge 

technology for re- solving challenging issues in a variety of industries, including 

optimization and cryptography. In this paper, they looked into the possibility of using 

quantum computers to solve Sudoku puzzles. They outlined a quantum method for 

solving Sudoku problems and assess its effectiveness in comparison to traditional 

techniques. The findings demonstrate that the quantum algorithm surpasses traditional 

methods in terms of both speed and accuracy, offering a new method for successfully 

completing Sudoku problems. 

3. Methodology 

3.1. Algorithms Used 

In our proposed approach, four types of algorithms used—(1) Backtracking; (2) 

Backtracking + Hashmap; (3) Constraint Propagation Algorithm; (4) Dancing 

Links/Algorithm X. 

(1) Backtracking: To solve a Sudoku puzzle, the back- tracking method checks 

each empty cell and tests each possible candidate or compatible digit. If a candidate 

conforms to the rules of a Sudoku grid with no violations, it is placed in the cell. The 

next empty cell is considered, and if a suitable candidate can be found that also 

conforms to the rules of a Sudoku grid, it is placed in that cell. However, if no candidate 

can be found, the backtracking method returns to the previous cells and replaces the 

candidate to conform to the rules of Sudoku. While the backtracking method 

guarantees a solution for all valid Sudoku puzzles, it is relatively more time-consuming 

compared to other methods [11]. 

(2) Backtracking + Hashmap: Optimization to the Back- tracking approach is by 

using a Hashmap to make searching efficient first iterate through the array then for 

each value in the array insert it into the hashmap. When using the backtracking + 

Hashmap optimization technique for solving Sudoku puzzles, if the algorithm attempts 

to insert a sequence of strings that is already present in the Hashmap, it indicates an 

inconsistent state. In such cases, the algorithm backtracks to the most recent consistent 

state and tries a different path to continue exploring the search space [12]. 

(3) Constraint Propagation Algorithm: Constraint Propagation is a technique that 

involves applying the constraints of the problem to eliminate candidate values from 

variables. In Sudoku, this means using the rules of the puzzle to propagate constraints 

and eliminate candidate values. For example, if a cell has a value of 5, all other cells in 

the same row, column, and 3 × 3 box cannot have a value of 5. By repeatedly applying 

these constraints and eliminating candidate values, constraint propagation can reduce 

the search space and make it easier to find the solution to the puzzle. This technique can 

be applied in combination with other techniques, such as backtracking, to efficiently 

solve Sudoku puzzles [13]. 

(4) Dancing Links/Algorithm X: Dancing Links is a popular algorithm used for 

solving exact cover problems, including Sudoku. It was introduced by Donald Knuth in 

his paper “Dancing Links” in 2000 [14]. The algorithm uses a data structure called a 

doubly linked circular list to represent the matrix of the exact cover problem. Each row 

S. Hira et al. / Sudoku Solver: A Comparative Study of Different Algorithms1190



and column of the matrix is represented by a node in the list, and each cell that has a 1 in 

the matrix is represented by a node in both the corresponding row and column lists. The 

algorithm starts by selecting a column with the fewest 1s in it and covering it by 

removing it from the header node. Then, for each row that has a 1 in that column, the 

algorithm recursively covers all other columns that have a 1 in that row. This process 

continues until either all columns have been covered (meaning a solution has been 

found), or there are no more rows to cover (meaning no solution exists). If the algorithm 

reaches a dead end, it backtracks to the previous decision point and tries a different 

path. This is done by “uncovering” the columns and rows that were previously 

covered and continuing the algorithm with the next possible column choice. Dancing 

Links is a powerful algorithm for solving exact cover problems because it is very 

efficient and has the ability to quickly find all solutions to a given problem. According 

to a research paper by Harrysson, M., and Laestander in 2014 [15], the Algorithm X 

implementation based on Dancing Links outperforms other exact cover problem solvers 

in terms of speed and memory usage on a variety of benchmark instances. The 

algorithm has been successfully applied to many problems beyond Sudoku, including 

scheduling, tiling, and more. 

3.2. Method and Algorithm 

Algorithm design is a crucial component of any computational problem-solving 

process. It involves the identification and specification of steps that must be taken to 

solve a problem, including the development of efficient and effective algorithms. In the 

case of a Sudoku solver using image processing, the goal is to design an algorithm 

that can accurately and quickly identify the numbers in the Sudoku puzzle from an 

image, and then solve the puzzle using established Sudoku-solving techniques. This 

section will outline the design of the algorithm used in the Sudoku solver, highlighting 

key steps and strategies employed to ensure accurate and efficient performance. 

1. Preprocessing: 

a. Read the input image. 

b. Convert the image to grayscale. 

c. Apply Gaussian blur to the image. 

d. Apply adaptive thresholding to the image to obtain a binary image. 

e. Find the largest contour in the image and crop it to obtain the Sudoku grid. 

2. Grid Detection: 

a. Divide the cropped grid into 81 cells. 

b. Determine whether each cell is empty or contains a number. 

c. If a cell contains a number, use OCR (Optical Character Recognition) to 

detect the number in the cell. 

3. Solving the Sudoku: 

a. Represent the Sudoku as a 9 × 9 grid using a 2D array. 

b. Select the algorithm to solve the Sudoku. 

c. Display the solved Sudoku on the output image. (as          shown in figure 4) 

Output: 

a. Display the input image with the solved Sudoku grid overlaid on top of it. 

b. Save the output image. 

Figures 2 and 3 show the Use case diagram and the Landing page UI of the 

system respectively. 

S. Hira et al. / Sudoku Solver: A Comparative Study of Different Algorithms 1191



 

Figure 2.   Sudoku solver use case diagram. 

 

Figure 3.   Landing page UI. 

 

Figure 4.   Input and output images. 

3.3. Dataset Description and Analysis 

The comparison between different algorithms is a crucial aspect of any research paper 

on the Sudoku solver. In this section, we present the comparison of four different 

algorithms for solving the Sudoku puzzle. The algorithms we have considered are 

backtracking, backtracking with hashing, constraint propagation, and dancing links. We 

tested these algorithms on a sample of 45 Sudoku puzzles with 15 very easy, 15 easy, 

15 medium, and 15 hard puzzles. The puzzles were selected based on the number of 

pre-filled cells, with very easy puzzles having the most cells filled and hard puzzles 

having the least. The purpose of this comparison is to analyze the performance of 

each algorithm in terms of time and space complexity and to determine which 

algorithm provides the best results. The results of this comparison will provide valuable 

insights into the strengths and weaknesses of each algorithm, which can help in 

selecting the most appropriate algorithm for solving the Sudoku puzzle in different 

scenarios. 

According to the table, the Dancing Links/Algorithm X algorithm consistently 

S. Hira et al. / Sudoku Solver: A Comparative Study of Different Algorithms1192



outperforms the other algorithms in terms of speed, taking only 1.8 seconds to solve a 

Very Easy puzzle and 0.85 seconds to solve a Hard puzzle. The Back- tracking 

algorithm is the slowest, taking over 200 seconds to solve a Hard puzzle. The 

Backtracking + Hashmap and Constraint Propagation Algorithm fall somewhere in 

between, with the former performing better on easier puzzles and the latter performing 

better on harder puzzles. It’s important to note that the results in the table may vary 

depending on the specific implementation of each algorithm and the hardware used to 

run the tests. Additionally, there may be other factors to consider besides speed, such as 

memory usage or ease of implementation. 

3.4. Memory Analysis 

In addition to analyzing the speed of algorithms in solving Sudoku puzzles of varying 

difficulty levels, memory usage is also an important factor to consider. To conduct the 

memory analysis, the Python memory profiler was used to measure the memory usage of 

each algorithm during the solving process. The results showed that backtracking used 0 

MiB, while Dancing Links used the most memory at 0.5 MiB. Constraint Propagation 

Algorithm used 0.1 MiB, and Backtracking + Hashmap used 0.2 MiB. These findings 

provide insight into the memory efficiency of each algorithm and can aid in choosing 

the most appropriate algorithm for solving Sudoku puzzles. 

4. Result and Analysis 

4.1. System Setup 

The system was set up to accept input in the form of JPEG files containing screenshots 

of Sudoku puzzles. The solver was able to successfully solve a large number of Sudoku 

problems using this input format. The system was tested on two different platforms: 

An Intel(R) Core(TM) i5-8300H CPU running Windows 11 Home (22H2), and an 

Apple M1 running macOS 13 Ventura. The solver was implemented using Python 3.9 

and the following libraries were used: 1. OpenCV version 4.5.3 (for image processing) 

2. Numpy version 1.21.2 (for numerical operations) 3. Matplotlib version 3.4.3 (for 

visualization) 4. React version 17.0.2 (for GUI) 5. Memory profiler version 0.58.0 (for 

memory analysis). 

4.2. Findings Using Various Inputs 

The solver was tested with sudoku problems of varying difficulty levels, and the results 

were compared using different algorithms: Backtracking, Backtracking + Hashmap.  

Table 1. Comparison between algorithms. 

Difficulty 

level 
Backtracking 

Backtracking + 

Hashmap 

Constraint 

Propagation 
Dancing 

Links/Algorithm X (s) 
Algorithm 

Very Easy 0.009058 0.044428 0.239052 1.282325 

Easy 0.006946 0.053653 0.119882 0.855890 

Medium 0.018885 0.026188 0.386073 0.056195 

Hard 215.0795 7.147690 2.788000 0.858287 

Total 215.113389 7.271969 3.533056 2.052697 

S. Hira et al. / Sudoku Solver: A Comparative Study of Different Algorithms 1193



Constraint Propagation, and Dancing Links. The Dancing Links algorithm 

outperformed the other algorithms in terms of speed and the number of solutions 

found. 

4.3. Few Points on Memory Analysis 

Memory analysis was performed using the Python memory profiler. The results showed 

that the Dancing Links algorithm used the most memory (0.5 MiB) compared to the 

other algorithms. Backtracking used the least amount of memory (0 MiB), while 

Backtracking + Hashmap and Constraint Propagation used 0.2 MiB and 0.1 MiB, 

respectively. Dancing Links/Algorithm X used the most memory, but was still 

relatively efficient compared to other algorithms 

4.4. Challenges 

One of the main challenges faced during the implementation was the image processing 

phase, where the solver had to identify the grid and extract the digits. The input 

image, as shown in figure 5, if not a computer-generated image contained some noise 

which led the model to misread the grid. So this led to the need of preprocessing the 

image before passing it through the scanner. This required careful tuning of the 

parameters and handling various edge cases. Another challenge was to implement the 

different algorithms efficiently and handle backtracking properly to avoid infinite loops. 

 

Figure 5.   Input and Output for blurred Image. 

5. Conclusion 

Based on the research and analysis presented in this paper, we can conclude that the 

designed Sudoku solver using four different algorithms: backtracking, backtracking 

with a hashmap, constraint propagation algorithm, and dancing link algorithm, is an 

effective tool for solving Sudoku puzzles. According to the literature review, the 

backtracking and constraint propagation algorithms are generally the most popular 

algorithms for solving Sudoku puzzles, as they are efficient and can solve most puzzles 

quickly. The comparative analysis of these algorithms demonstrates that each 

algorithm has its strengths and weaknesses in terms of time and space metrics when 

dealing with different levels of sudoku puzzles. According to the analysis of the dataset, 

the dancing link algorithm outperforms all the other 3 algorithms in terms of time at 

the hard level of sudoku puzzles, which are most commonly available. In summary, the 

designed Sudoku solver provides an efficient and accurate solution to Sudoku puzzles, 

S. Hira et al. / Sudoku Solver: A Comparative Study of Different Algorithms1194



and the comparative analysis of the algorithms used can serve as a valuable resource 

for researchers and practitioners working in this area. Further research can be 

conducted to explore the potential for combining these algorithms with other 

approaches to develop more powerful and versatile Sudoku solvers. 

References 

[1] Maji A K, Pal R K. Sudoku   solver   using   mini   grid based backtracking [C]. 2014 IEEE 
International Advance Computing Conference (IACC), Gurgaon, India, 2014, pp. 36-44, doi: 
10.1109/IAdCC.2014.6779291. 

[2] Wang, C. et al. A Novel Evolutionary Algorithm with Column and Sub-Block Local Search for Sudoku 
Puzzles [J]. IEEE Transactions on Games, 2023, 1–11, doi: 10.1109/TG.2023.3236490. 

[3] Gupta K, Khatri S, Khan M H. A Novel Automated Solver for Sudoku Images [C]. 2019 IEEE 5th 
International Conference for Convergence in Technology (I2CT), Bombay, India, 2019, pp. 1-6, doi: 
10.1109/I2CT45611.2019.9033860. 

[4] Nwulu E, Bisandu D, Dunka B. A hybrid backtracking and pencil and paper sudoku solver [J]. 
International Journal of Computer Applications, 2019, 181, 975-8887. 10.5120/ijca2019918642. 

[5] Dheeraj G S, Lakshmi K B V, Krishna K A. Computer Vision based Sudoku Solving with Augmented 
Reality [J]. International Research Journal of Engineering and Technology (IRJET), 2020, 7(10): 
1489–1493. 

[6] Syed A, Merugu S, Kumar V. Augmented Reality on Sudoku Puzzle Using Computer Vision and Deep 
Learning [J]. Augmented Reality on Sudoku Puzzle Using Computer Vision and Deep Learning,  
2020, 643: 567–578, doi:10.1007/978-981-15-3125-555. 

[7] Sudoku solving using patterns and graph theory [J].  International   Journal   of   Emerging   
Technologies and   Innovative   Research, 2021, 8(3): 2219-2226. Available: 
http://www.jetir.org/papers/JETIR2103276.pdf 

[8] Iyer R, Jhaveri A, Parab K. A Review of Sudoku Solving using Patterns [J]. International Journal of 
Scientific and Research Publications, 2013, 3(5). 

[9] Musliu N, Winter F. A Hybrid Approach for the Sudoku Problem: Using Constraint Programming in 
Iterated Local Search [J]. IEEE Intelligent Systems, 2017, 32(2): 52-62, doi: 10.1109/MIS.2017.29 

[10] Singh V, Sharma V, Bachchas V. Sudoku Solving Using Quantum Computer [J]. Ijraset Journal for 
Research in Applied Science and Engineering Technology, 2023, 128: 8. 

[11] Herimanto P, Sitorus P, Zamzami E M. An Implementation of Backtracking Algorithm for Solving a 
Sudoku-Puzzle Based on Android [J]. J. Phys.: Conf. Ser., 2020, 1566: 012038. 

[12] A Survey on Sudoku Solver Using Various Algorithms [J]. International Journal of Emerging Trends 
Technology in Computer Science (IJETTCS), 2017, 6(4): 123-129. 

[13] Norvig P, Russel S. Artificial Intelligence: A Modern Approach. Third Edition [D]. Harlow: Pearson 
Education, 2016. 

[14] Knuth, D. Dancing links [J]. arXiv Preprint, 2000. 
[15] Harrysson M, Laestander H. Solving Sudoku efficiently with Dancing Links. (Degree Project in 

Computer Science, DD143X) [D]. Stockholm, Sweden: Stockholm University, 2014. 
 
 

S. Hira et al. / Sudoku Solver: A Comparative Study of Different Algorithms 1195


