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Abstract. The paper presents an algorithm for simulation modelling of nucleotide 

variations in the genomic DNA molecule. To identify single nucleotide genetic 

polymorphisms, it is proposed to use machine learning methods trained on 

simulated data. A comparative analysis of the most effective classical and machine 

learning algorithms for identifying single nucleotide polymorphisms was 

performed on simulated data. The most optimal method for identifying single 

nucleotide genetic polymorphisms in DNA molecules at various experimental 

noise levels is the machine learning algorithm CART. 

Keywords: Single Nucleotide Polymorphism, Simulation Modelling, Machine 

Learning. 

1. Introduction 

Genetic processes are studied using genomic sequencing experiments, which 
observe information on the composition of DNA and RNA molecules and their coding 

fragment expressions [1]. Complete genome sequencing or sequencing of only 

functionally significant regions of the human genome allows simultaneously 

identifying multiple sites of single nucleotide polymorphism (SNP), having diagnostic 

or prognostic significance for many human diseases [2, 3]. Statistical methods of 

Fisher's exact test, binomial distribution, entropy-based tests and machine learning are 

used for identifying the SNPs [2, 4]. These methods are quite universal and simple for 

program implementation, however, are computationally expensive and difficult to be 

effectively applied in the analysis of experimental data with a high noise level and 

various experimental distortions, which are sources of gaps, repetitions, and other 

anomalous values [1]. Practical experimental studies use simulation modelling to select 

the most optimal SNP identification algorithm, test competing pipelines of analysis, 

and evaluate the performance of specific experimental designs for studying biophysical 

systems [5]. Simulation modelling is also used to generate training data for machine 

learning methods to directly identify SNP sites of various organisms from a single 

 
1 Corresponding author: Mikalai M. Yatsko, Belarusian State University, Minsk, 

220030, Belarus; Email:yatskou@bsu.by 

 
 

Applied Mathematics, Modeling and Computer Simulation
C.-H. Chen et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/ATDE231044

1031



sequencing experiment [6]. In this case, the formation of simulated training data can 

have advantages in terms of accuracy and efficiency in the analysis of experimental 

data both with a low number of coverages and with gaps due to experimental 

distortions. It is expected that simulated data from a specific experiment on the human 

genome will provide more accurate training for machine learning SNP identification 

algorithms than those of publically available general datasets. 

This work presents a simulation model of the DNA sites and a comparative analysis 

of the most effective classical and machine learning SNP identification algorithms. The 

simulation model allows to generates datasets both for training machine learning 

models and for testing available SNP identification algorithms. The performance of 

selected SNP identification algorithms was assessed in the course of a comparative 

analysis on simulated sequencing data.  

2. Simulation modelling of SNP sites 

Simulation modelling of SNP sites is carried out based on experimental data, under the 

assumption that the main data characteristics, such as the number of nucleotide 

coverages, are of the beta or normal distribution [7]. Suppose a site j contains the 

reference nucleotide base r (nucleotides A, C, G, or T); D = {b1, b2, b3, b4} is a set of n 

reads (covers) of nucleotide bases A, C, G or T, recorded from sequencing the site j; 

the numbers of site coverages n, b1, b2, b3, b4 obey the beta (Equation 1) or normal 

(Equation 2) distributions 
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where µ and σ are parameters of mathematical mean and standard deviation. 

The idea of modelling is to randomly generate NSNP positions of SNP sites in the 

sequence of the considered molecule S, consisting of N nucleotide sites, for each of 

which the numbers of coverages n, b1, b2, b3, b4 are reproduced according to the beta or 

normal distributions in the defined range [nmin; nmax]. For a non-reference site j, the 

total number of coverages n is modeled, then the number of coverages for the reference 

bRef and non-reference bnRef nucleotides is generated from the resulting n. Nucleotide 

coverages for the SNP site are modeled similarly. It is assumed that there are coverages 

of no more than two different nucleotide bases on the site. For a comprehensive study 

of SNP identification algorithms, the addition of Gaussian noise with parameters µ = 0 

and σl = ql ∙ bl, l = 1-4 (indexed nucleotides A, C, G, and T), to the numbers of 

nucleotide covers were implemented (Equation 3) 

bl
* = bl + z ∙ σl,    (3) 

where z is the realization of a standardized normal random variable, ql > 0. Varying the 

parameter ql changes the level of experimental noise, namely, it regulates the 

informativeness of the useful signal, which allows comprehensively studying the 

effectiveness of selected SNP identification algorithms and recreate special 

experimental conditions. 
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The proposed simulation algorithm reproduces datasets as close as possible to 

experimental conditions, given by the numbers of site coverages and the laws of their 

distributions, the number of SNP sites. The flow diagram of the algorithm for 

modelling SNP sites is shown in figure. 

Algorithm. 

Step 1. Initialize the model parameters N, NSNP, nmin and nmax, α and β (or µ and σ) 

(figure 1, block 1). Parameters α and β (or µ and σ) are given for distributions of the 

numbers of site coverages n, b1, b2, b3, b4. 

Step 2. Generate the SNP site positions L = {l1, l2, …, lNSNP} in the sequence S 

according to the uniform discrete distribution in the interval [1; N] (block 2). Set the 

position index j = 1. 

Step 3. Gamble the total number of reads n on the current site j as a realization of a 

random variable of the beta or normal distribution with experimentally extracted 

parameters (block 3). 

Step 4. Check if the site j is SNP. Accordingly go to step 5 or 6 (block 4). 

Step 5. Generate the numbers of nucleotide coverages b1, b2, b3, b4 by the beta 

distribution with experimentally assessed parameters for non-SNP sites (block 5). Go 

to step 7. 

Step 6. Generate the number of nucleotide coverages b1, b2, b3, b4 by the beta 

distribution with experimentally assessed parameters for SNP sites (block 6). 

Step 7. Add the Gaussian noise to the number of nucleotide coverages b1, b2, b3, b4 

for a site j (Equation 3, block 7). 

Step 8. Record the simulated characteristics of the site j to a data file (block 8). 

Step 9. Check the termination condition of the simulation algorithm (block 9). If 

all sites in the sequence are simulated, i.e. j = N, then stop the simulation. Otherwise j = 

j + 1 (block 10) and go to step 3. 

 
Figure 1.  Flow diagram of the algorithm for modelling SNP sites 
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3. Machine learning algorithms 

To apply machine learning algorithms, it is necessary to form a set of features 

charactering a nucleotide site. It was decided to use 4 features: X1 – the number of 

coverages of the reference nucleotide, X2-X4 – the numbers of coverages for non-

reference nucleotides sorted in descending order. The data are normalized to the total 

number of site coverages n. Taking into account the limited number of 4 features, and 

the binary classification problem (SNP and non-SNP site classes) to be solved, it is 

preferable to test basic machine learning methods, such as Conditional Inference Trees 

(CIT), Classification And Regression Tree (CART), Support Vector Machines with a 

linear separating function (SVM), and Extreme Gradient Boosting (XGBoost). Let's 

take a closer look at the selected methods. 

CIT. The algorithm is based on the use of the Strasser and Weber statistical test [8]. 

Binary partitioning at a tree node is carried out according to one feature Xj, for which 

the main and alternative hypotheses about the statistical relationship with the output 

variable Y are formulated. To test the hypothesis, the Strasser and Weber permutation 

test is used and p-values are calculated. The feature for which the p-value is minimal is 

selected as a partition node Xj. The advantage of the algorithm is the use of a statistical 

criterion and relatively high accuracy among classical machine learning algorithms. 

CART. Binary splitting in a node of a tree is carried out according to one feature 

Xj, the criterion for splitting a node is the Gini index, the threshold for splitting a 

feature is selected based on the minimum of the Gini index [9]. The advantages of the 

algorithm are versatility and compactness. 

SVM. The method is designed to find optimal, in a certain sense, data 

classification functions (decision functions) [10]. The advantage is simplicity and 

efficiency in separating two-class problems. 

XGBoost. The method is based on a gradient boosting algorithm on regression 

decision trees that approximate the negative gradient functions constructed from the 

samples of the training dataset, the result of which determines the contributions of m 

weak classifiers to the overall classifier [11]. The sample drops to the class whose 

probability is maximal. The advantage of the algorithm is its high accuracy and speed 

of calculations (compared to other ensemble algorithms). 

4. Organization of a computational experiment 

In our computational experiment the machine learning models were trained on 

specially simulated datasets and then the comparative analysis of the classical and 

machine learning SNP identification algorithms was performed on other generated 

datasets with varying levels of the added Gaussian noise. 

The machine learning models of CIT (the R function ctree of the package party), 

CART (the R function rpart of the package rpart), SVM (the R function svm of the 

package e1071) and XGBoost (the R function xgboost of the package xgboost) were 

trained on synthetic data simulated using the beta distribution with no adding any 

Gaussian noise. A training dataset contained 40,000 sites, of which 20,000 were SNPs. 

We included in the comparative analysis two most effective existing SNP 

identification algorithms – the binomial distribution and entropy-based tests [2, 4]. An 

efficient software implementation of the binomial distribution test (BDT) has been 

developed, a feature of which is the automation of the selection of a threshold value 
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when identifying SNP sites. It is proposed to use the value 10-k as a threshold value of 

probabilities, where k is the average number of site coverages estimated from the 

simulated or experimental dataset. The published software implementation is used as 

an entropy-based test (EBT) [4]. Thresholds in identifying SNP sites are: the entropy 

E > 0,21 and the p-value < 0,5. 

For a comprehensive study of SNP identification algorithms datasets were 

simulated taking into account the addition of varying Gaussian noise. Two groups of 

datasets were generated: 1) the parameter values for the reference and non-reference 

channels of the site qR and qnR were assumed equal and varied from 0 to 0,6 – these 

datasets allow to investigate the influence of the increasing noise level in the nucleotide 

channels of coverages on the accuracy of the SNP identification algorithms. 2) the 

parameter qR = 0, qnR varied from 0,5 to 2,0 – the datasets are for investigating the 

influence of increasing noise level in the non-reference channel on the accuracy of the 

algorithms. Datasets of 20,000 sites were simulated, each with 20 randomly generated 

SNP sites. The number of datasets for each parameter combination was 3. 

The performance of the SNP identification algorithms was evaluated using the 

standard classification measures for unbalanced classes, such as Precision, Recall and 

score F1, characterizing the properties of the algorithms accept false positive (non-

SNPs as SNPs, Precision) and false negative (SNPs as non-SNPs, Recall) events, and 

their combined contribution the score F1 [12]. 

In the course of the work, R-functions were developed that implement various 

stages of simulation modelling and SNP identification algorithms. It is proposed to 

integrate the developed functions into a dedicated R-package that can be used to model 

synthetic datasets, according to a concrete experiment, in order to comprehensively test 

and select the best algorithms for identifying SNP sites, as well as for generative data 

modelling to train identification algorithms based on machine learning methods. 

5. Results 

Based on the selected sets of simulated data, we conducted a comparative analysis of 

the most effective SNP identification and machine learning algorithms, trained on 

simulated data. The results of the comparative analysis of the algorithms are collected 

in table 1. 

Table 1. Accuracy of SNP identification algorithms based on the score F1 

qR; qnR 
F1, % 

BDT EBT CIT CART SVM XGBoost 

0; 0 91,9 (0,8) 97,6(1,4) 100 (0) 100 (0) 100 (0) 100 (0) 

0,2; 0,2 
91,8 (2,1) 

96,0 (0,8) 
99,0 

(0,8) 

98,3 

(0,9) 

98,3 

(0,9) 

98,3 

(0,9) 

0,4; 0,4 
84,1 (1,8) 82,3 (3,2) 47,4 

(0,5) 

88,8 

(3,1) 

2,6 (3,0) 44,9 

(1,5) 

0,6; 0,6 
82,7 (4,5) 79,3 (2,3) 19,0 

(1,1) 

81,1 

(1,7) 

1,6 (1,6) 17,6 

(1,3) 

0,0; 0,5 
87,0 (3,0) 

92,2 (1,9) 
92,6 

(2,4) 

91,8 

(1,7) 

92,0 

(2,8) 

91,8 

(1,7) 

0,0; 1,5 
75,8 (2,9) 

77,1 (3,4) 
85,6 

(2,8) 

88,2 

(4,0) 

88,2 

(4,0) 

88,2 

(4,0) 
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0,0; 1,5 
72,6 (2,5) 

74,7 (2,1) 
87,0 

(3,5) 

92,1 

(2,7) 

92,3 

(1,6) 

92,1 

(2,7) 

0,0; 2,0 
56,7 (0,6) 

59,5 (1,6) 
72,9 

(1,7) 

88,9 

(2,0) 

85,6 

(2,8) 

88,9 

(2,0) 

Note. The standard error of the mean is indicated in parentheses. 

 

Datasets 1. On the dataset with no adding normal noise, the highest accuracy of the 

score F1 (100 %) is obtained for the machine learning methods. The accuracy of EBT 

(97,6 %) is higher than that of BDT (91,9 %). Wen increasing noise in the data from ql 

= 0,2 to 0,6, the accuracy of the BDT, EBT and CART algorithms decreases to 80-

82%, and for the machine learning models CIT, SVM and XGBoost – to 18 % and 

lower. The poorest accuracy, when noise increases from 0.4 and higher, is observed for 

the SVM model (1,6-2,6 %). 

Datasets 2. When the noise in the non-reference channel increases from qnR = 0,5 

to 2.0, the accuracy of classical algorithms decreases significantly to 57-60%, and of 

machine learning algorithms to 73-89%. The CIT model has the lowest accuracy 

among classification methods when noise increases from qnR = 1,5 (73%). 

These results allow to conclude that for non-noisy data it is preferable to use 

machine learning algorithms. When data are uniformly noisy in the nucleotide 

channels, it is advisable to use classical algorithms and the CART model; when non-

reference channels are noisy then the machine learning algorithms should be applied. 

The poor classification accuracy for the CIT algorithm at higher noise levels can be 

explained by the deterioration of the statistical properties of the samples under 

consideration, which is critical for statistical algorithms. 

6. Conclusions 

It is proposed to use machine learning methods trained on simulated data to identify the 

single nucleotide genetic polymorphism sites. An algorithm has been developed for 

simulation modelling of single nucleotide sites in the genomic DNA, based on the 

generation of random events according to the beta or normal distributions. A 

comparative analysis of the most effective classical and machine learning algorithms 

for identifying single nucleotide polymorphism sites, trained on simulated data, was 

performed. Using examples of non-noisy data – the best methods are of machine 

learning; with increasing the noise level – the binomial distribution and entropy-based 

tests and CART. When adding noise to non-reference channels, the best methods are of 

machine learning – CART, SVM and XGBoost. The conducted research allows to 

conclude that the most optimal method for identifying single nucleotide genetic 

polymorphisms at various experimental noise levels is the machine learning algorithm 

CART. 
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