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Abstract. Tunnels are an essential component of urban transportation. Compared to 
open roads, accidents inside tunnels tend to have longer durations, and the road 
closures resulting from accidents have a greater impact on traffic operations, 
particularly in the case of submarine tunnels. This study focuses on investigating the 
characteristics and trends of accident duration in submarine tunnels based on 
accident data from Qingdao Jiaozhou Bay in China from 2018 to 2020. Firstly, the 
study examines the influence of ten variables, including the number of vehicles 
involved, accident types, and weather conditions, on the duration of accidents. The 
data indicate that the manner and quantity of vehicles leaving the accident scene are 
critical factors affecting accident duration, while weather conditions have no 
significant impact. Furthermore, considering the correlations among the influencing 
factors and the high-dimensional sparsity of the data, a PCA-LGBM model for 
accident duration prediction is constructed. This model combines the dimensionality 
reduction capability of Principal Component Analysis (PCA) with the powerful 
prediction capability of LightGBM (LGBM). Finally, experimental results 
demonstrate that compared to other models such as MLR, BPNN, PCA-BPNN, and 
LGBM, the proposed model exhibits superior performance with a minute-level 
accuracy rate of 75%. 

Keywords. Urban submarine tunnel; traffic accidents; accident duration; PCA; 
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1. Introduction 

Underwater tunnels in urban areas have more complex traffic environment features 

compared to open roads. Consequently, they are prone to frequent traffic accidents. After 

an accident occurs, tunnel management authorities close the lanes to ensure safety, and 

the duration of lane closure depends on the duration of the accident. Therefore, accurate 

prediction of accident duration is crucial for decision-making in the management of 

underwater tunnel traffic operations. It also helps users choose alternative routes to avoid 

congestion. 

Statistical methods and machine learning are two primary approaches for predicting 

the duration of accidents. Regression models were the earliest ones used for accident 

duration prediction [1-4]. When dealing with complex and highly nonlinear relationships 
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between dependent and independent variables, machine learning methods have shown 

superior performance [5-9]. Statistical methods have strict mathematical assumptions 

and functional structures, making them superior to machine learning methods in 

explaining the mathematical relationships between accident duration and influencing 

factors. However, machine learning methods exhibit higher accuracy and stability in 

model predictions, with tree-based models performing exceptionally well. Currently, 

most research focuses on a single method, and the research scenarios are mostly limited 

to open roads, with relatively fewer studies focusing on tunnel scenarios, especially 

underwater tunnel scenarios. Current studies on the factors influencing accident duration 

include variables related to road conditions, environment, accident characteristics, etc. 

[10]. However, no research has been found on the mode of vehicle departure after an 

accident, which is one of the reasons for the relatively low accuracy in time prediction. 

To address the aforementioned issues, this paper proposes a combination model, 

PCA-LGBM, based on Principal Component Analysis (PCA) and the tree-based model 

Light Gradient Boosting Machine (LGBM). This model aims to improve the prediction 

accuracy and algorithm interpretability and achieve minute-level prediction of accident 

duration in underwater tunnel scenarios. 

2. Materials 

2.1. Data Resource 

This study collected data on 2,047 traffic accidents that occurred in the Qingdao Jiaozhou 

Bay Undersea Tunnel in China between 2018 and 2020.  The data includes 11 variables, 

such as accident duration, accident location, and accident type. 

2.2. Data Analysis 

2.2.1. Accident Duration 

In this study, accident duration is used to represent the time interval from accident 

discovery to accident clearance.  

According to statistical analysis, the overall distribution of accident duration in the 

tunnel is shown in figure 1, which exhibits a long-tail distribution. The maximum 

duration is 120 minutes, the minimum duration is 1 minute, and the average duration is 

11 minutes. 

2.2.2. Traffic Accident Characteristics 

This study collected data on 10 accident characteristics, including accident type, vehicle 

departure mode, need for traffic police, vehicle driving direction, accident location, 

accident time period, weather conditions, number of involved vehicles, number of towed 

vehicles, and number of mediating vehicles, as shown in table 1. It is worth noting that 

the information regarding vehicle exit mode, number of towed vehicles, and number of 

mediating vehicles has not been previously addressed in previous studies. 
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Figure 1.  Histogram of accident duration. 

Table 1. Characteristics of traffic Accident in and out of tunnels (2018–2020). 

Variable Definition Quantity Proportion (%) 

Accident type 
1 = Hit-fixed-object 14 0.7% 

2 = Rear-end 2033 99.3% 

Traffic police 
0 = No 1991 97.3% 

1 = Yes 56 2.7% 

Direction 
1 = North to south 981 48.0% 

2 = South to North 1066 52.0% 

Mileage marker 

1 = 1~2 km 32 1.6% 

2 = 2~3 km 216 10.6% 

3 = 3~4 km 269 13.1% 

4 = 4~5 km 514 25.1% 

5 = 5~6 km 520 25.4% 

6 = 6~7 km 300 14.7% 

7 = 7~8 km 159 7.7% 

8 = 8~9 km 37 1.9% 

Day or night 
0 = Bright 1993 97.4% 

1 = Dark 54 2.6% 

Weather 
1 = Wet 147 7.2% 

2 = Dry 1900 92.8% 

Departure mode 1 = Tow away 395 19.3% 

 2 = Mediated departure 1269 62.0% 

 3 = Self-driving departure 383 18.7% 

Number of vehicles 

1 15 0.7% 

2 1380 67.4% 

3 444 21.7% 
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Variable Definition Quantity Proportion (%) 

4 147 7.2% 

5 46 2.2% 

6 9 0.4% 

7 3 0.1% 

9 2 0.1% 

Number of towed vehicles 

0 1614 78.8% 

1 326 15.9% 

2 100 4.9% 

3 5 0.2% 

4 2 0.1% 

Number of mediating vehicles 

0 253 12.4% 

1 854 41.7% 

2 674 32.9% 

3 178 8.7% 

4 70 3.4% 

5 15 0.7% 

6 3 0.1% 

In terms of accident types, rear-end collisions account for 99.3% of the total.  The 

dominance of rear-end collisions in tunnels can be attributed to factors such as the 

prohibition of lane changing except at merging/diverging sections.  Collisions with fixed 

objects, such as tunnel sidewalls, are usually associated with hazardous driving behaviors 

(e.g., speeding) and violations (e.g., drunk driving), often requiring the intervention of 

traffic police. 

Regarding spatial characteristics, there is not much difference in the direction of 

travel.  In contrast to previous research conclusions, traffic accidents typically occur at 

tunnel entrances and exits, while in underwater tunnels, accidents are concentrated in the 

middle section (50.5%).  Underwater tunnels often have a “U” or “V” shaped 

longitudinal profile, and drivers tend to experience increased pressure in long tunnels, 

leading to a tendency to unconsciously accelerate to maintain visual continuity.  

Consequently, rear-end collisions are more likely to occur when vehicles travel too fast 

or fail to brake in time at the bottom of the slope.  In terms of temporal characteristics, 

the majority of accidents occur during the daytime, with a smaller proportion occurring 

at night.  Most accidents occur in dry weather conditions, with only 7.2% occurring 

during rainy or snowy weather. 

The number of vehicles involved in accidents has been mentioned in previous 

research, but the mode of vehicle departure and the corresponding quantity have not been 

addressed.  In this study, the mode of vehicle departure and its quantity are defined as 

the vehicle departure situation.  The vehicle departure modes are classified into three 

categories: (1) accidents that do not cause any damage, and the vehicle owner drives 

away on their own, (2) accidents that result in minor damage but lead to disagreements 

among vehicle owners, requiring third-party intervention for resolution before departure, 

and (3) accidents with severe consequences where the accident vehicle cannot be started 
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and requires towing.  According to data statistics, 19.3% of vehicles need to be towed, 

62.0% require mediation before departure, and 18.7% of vehicles leave on their own. 

3. Methodology 

3.1. PCA-LGBM Combination Model 

First, the original correlated variables are transformed into a set of linearly uncorrelated 

variables using PCA. The number of principal components is determined based on the 

cumulative contribution rate. Then, an LGBM model is built based on these principal 

components. The PCA algorithm workflow in this study is as follows. 

(1) The standardized collection of the original indicator data results in a p-

dimensional factor vector � =  (��, ��, … , ��)�, with n (n  =  2047) samples denoted as ��  =  (���, ���, … , ���)�, where i  =  1, 2, ..., n, and n > p. The data is transformed using 

standardization. Standardization matrix Z: 

���  =  
���	�̅��� , � =  1,2, … ,�                                            (1) 

where �̅�  =  
� ����

� � �
 , ��  =  
�� (���	�̅�)��
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	� . 

(2) Calculation of the covariance matrix R from the standardized matrix Z: 

	 =  
���
	�  =  
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, 
, � =  1,2, … ,�          (2) 

(3) The covariance matrix R is calculated, and its characteristic equation �	 − �
��  =  0 is solved to obtain p eigenvalues. The principal components are then 

determined based on the cumulative contribution rate β, and the number of principal 

components m is determined. 

� =  
� ��


� � �� ���

� � �

                                                              (3) 

For each  ��，� =  1,2, … ,�, solving the equation system 	� =  ���, we obtain 

the unit eigenvectors ���. 

(4) Transform the standardized indicator variables into principal components. 

���  =  ������, � =  1,2, … ,�                                          (4) 

LGBM (Light Gradient Boosting Machine) is an ensemble algorithm for gradient 

boosting frameworks. One of the innovative ideas of this algorithm is the use of the 
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Gradient-based One-Side Sampling (GOSS) algorithm. GOSS selectively retains 

instances with larger gradients while randomly sampling instances with smaller 

gradients. The GOSS algorithm first sorts the instances based on the absolute values of 

their gradients and selects the top “a” instances. Then, it randomly samples “b” instances 

from the remaining data. When calculating the information gain, the algorithm multiplies 

the gradients of the sampled instances with small gradients by (1-a)/b. This approach 

allows the algorithm to focus more on the undertrained instances without significantly 

altering the distribution of the original dataset. Let � be the training datasets on a fixed 

node of the decision tree. The variance gain of splitting feature � at point � for this node 

is defined as 

��|�(�)  =  
�
� (

(∑ ��
��∈�:������
)�


�|�� (�) +
(∑ ��
��∈�:������

)�


�|��
(�) )              (5) 

where ��  =  ∑ 
��� ∈ �� ， ��|�� ���  =  ∑ 
��� ∈ �: �� ≤ �� ,  ��|�� ���  =  ∑ 
��� ∈�: �� > ��. 
The formula for calculating the estimated variance gain ������  of the GOSS 

algorithm is as  

���(�)  =  
�
 (

(∑ ������
�
��∈�:������

∑ ��
��∈�:������
)�


��(�) +
(∑ ������

�
��∈�:������
∑ ��
��∈�:������

)�


��(�) )  (6) 

� represents the subset with larger gradients and �  represents the subset with 

smaller gradients. And 
�	��  is used to normalize the sum of the gradients over B. 

Furthermore, the exclusive feature bundling algorithm can combine many exclusive 

features into fewer dense features, effectively avoiding unnecessary computation for zero 

feature values. 

The data samples processed by the PCA algorithm are divided into training and 

testing sets in a ratio of 0.8:0.2, where 80% of the data is used to train the proposed model 

and 20% is used to test the trained model. 

3.2. Model Evaluation Index 

This study primarily evaluates the prediction accuracy and performance of the model 

based on the error between predicted values and actual values. Commonly used 

indicators include Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and 

Error Ratio (Δε). 

4. Results and Discussions 

4.1. Principal Component Analysis Results 

Based on the PCA, four principal components were obtained with a cumulative 

contribution rate (β) of 75%. Principal Component 1 mainly reflects the information of 

the number of vehicles, departure mode, number of towed vehicles, and number of 
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persuaded vehicles. These four features primarily describe the departure information of 

the accident participants. Principal Component 2 mainly reflects the driving direction 

and tunnel mileage marker of the accident location. These two features describe the 

spatial location information of the accident. Principal Component 3 reflects the accident 

type and whether police intervention is required, while Principal Component 4 reflects 

the accident occurrence time information. 

4.2. Principal Component Analysis Results 

To compare the performance of the proposed PCA-LGBM model with other algorithms, 

the results were compared with MLR, BPNN, PCA-BPNN, and LGBM models.  

According to figure 2, it can be observed that the PCA-LGBM model has the best 

predictive performance, with predicted values closely matching the true values. And the 

PCA-LGBM model has the lowest errors in all aspects, indicating that the model has the 

optimal performance. 

 

Figure 2.  Evaluation index of each model. 

5. Conclusions 

This study investigates the duration of traffic accidents in urban underwater tunnels using 

real-world data.  It proposes a PCA-LGBM model that combines the dimensionality 

reduction capability of PCA with the powerful predictive ability of LGBM.  It is the first 

study to incorporate the departure mode and quantity of vehicles as factors influencing 

accident duration, thereby further improving the predictive accuracy of the model.  

Experimental results demonstrate that the performance of the proposed model is 

significantly better than four other models, namely MRL, LGBM, BPNN, and PCA-

BPNN.  Future research will consider collecting more comprehensive accident-related 

information, such as traffic volume and casualties, and expanding the sample size to 

ensure higher accuracy and generalizability of the model. 

RMSE（min） MAE（min） Δε

MRL 5.65 3.09 0.32

BPNN 5.42 2.75 0.3

LGBM 5.45 2.81 0.3

PCA-BPNN 5.13 2.71 0.29

PCA-LGBM 4.7 2.57 0.25
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