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Abstract. Digital Twin (DT) is a virtual representation that is parameterized based 
on the real process data to model, simulate, monitor, analyze, and optimize the 
physical systems they represent. DT have been predominantly used in the 
mechanical engineering field and have yet to be extensively used in chemical flow 
processes particularly for the challenge of scale-up which is very important 
particularly when moving from lab experiment to industrial scales. It is a challenge 
to maintain various process parameters while increasing the scale of reactors 
geometry. The parameters might not show a predictable linear co-relationship due 
to concurrent chemical conversion processes behaving differently on different scale. 
We apply and compare various machine learning methodologies such as Radial 
Basis Function Neural Networks, Gaussian Process Regression and Polynomial 
Regression to the development of chemical flow process DT for scale-up. We show 
that these methodologies can be used to predict the product yield of a chemical flow 
process during scale-up. 
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1. Introduction 

Digital Twin (DT) are virtual models used to simulate and optimize physical systems 
based on actual process data. While they have practical applications in aerospace and 
manufacturing, they have yet to be fully utilized in chemical flow processes due to the 
challenge of scaling up. Scaling up chemical processes is difficult because multiple 
process parameters must be maintained while increasing the reactor's size. DTs provide 
a way to digitally test and validate manufacturing processes before deployment, making 
them useful for scaling up reactor geometries. Developing a useful DT model to facilitate 
the scaling-up process though scale up of reactor geometries is the main motivation of 
this paper. We used machine learning techniques like RBFNN, GPR-RBF, and 
Polynomial Regression to predict product yield in chemical flow processes. RBFNN had 
the least RMSE and performed best, while GPR was slightly worse. NN is better for large 
datasets but requires high computation power. GPR needed low computation power and 
worked well with small datasets. Polynomial models can capture nonlinear relationships 
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between variables. Our results show that data-driven machine learning methods can be 
used to create digital twins of chemical flow processes. DT allows for simulation and 
testing with different scenarios, reducing risks and costs associated with physical 
experimentation. 

 
2. Literature Review 

2.1.  Continuous Flow Chemistry 

Generally, flow process equipment consists of pumps for transporting reagents and 
solvent through the reaction loops which introducing a small volume of reagents. The 
reagent is fed and combined through a mixer, passing into a flow reactor, providing the 
reaction residence time and desired chemical output [1].  There are reaction conditions 
that are not possible to safely achieved with batch process reaction. Whereby it is 
achievable with continuous flow process technology due to its literal design resulting 
with higher quality, less impurity, and faster reaction cycle time [2]. When conducting 
continuous flow experiments, there are three main key parameters which are input, 
intrinsic and output parameters. Input parameters refer to the reaction temperature, time, 
and its molar ratio. Intrinsic parameters refer to the solution concentrations, 
stoichiometric ratios and the reactor volume. Meanwhile the output parameters are 
referring to the flow rates for the whole process.  

Converting chemical syntheses is not a straightforward task and it is challenging 
to maintain various process parameters while increasing the characteristic and scale of 
reactors geometry from small lab experiments to large continuous flow processes. The 
complexity is because the parameters might not show a predictable linear co-relationship 
due to concurrent chemical conversion processes behaving differently on different scales 
[4]. Prior to the flow process scale-up, the selection of the reactor’s equipment is chosen 
to have the same dimensionless characteristic constants to the chemical reaction, mass 
and heat transfer [5].  
 

2.2. Digital Twin Overview 

Digital Twin (DT) was first defined in 2002 as a digital informational of a physical 
system by creating a mirror entity of its own and linked with the physical asset for 
Product Lifecycle Management (PLM) whereby it is logically centralized information of 
the product throughout its lifecycle. Later, the Digital Twin come into a concrete term 
appeared at DARPA’s Defense Sciences Office (DSO) for an aerospace industry in 2010 
[6]. A DT is a model of virtual model with an advanced version of simulation, which is 
a replication of a physical system or process [7]. DT can be used to model, simulate, 
monitor, analyse, and optimise the actual physical system. It is only in recent years that 
the concept of DT was extensively used for chemical process engineering. Increasing 
scientific contributions were shown in the petrochemical industry for production control 
[8] [9], and bioprocess manufacturing plant [10]. A study define a generic framework of 
an Operational Digital Twin (ODT) for the field of chemical process engineering [11]. 
DT have not yet been directly applied in the chemical flow process with the main 
research goals to model and predict a chemical flow process in order to optimize the 
reaction output. 
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2.3. Machine Learning Technique 

Table 1. All three-machine learning technique introduced with their advantages.  
Machine 
Learning 
Technique 

Definition Advantages 

Radial 
Basis 
Function -
Neural 
Networks 
(RBFNN) 

RBFNNs are artificial neural 
networks with multi-layered forward 
network with multi-inputs and multi 
outputs.  
� first layer has (k) inputs. 
� second is a hidden layer with (L) 

units. 
� third layer has (N) outputs [12].   

� A simple network structure, have a better 
approximation capability, and faster learning 
compared to others. 

� They are universal approximators and can 
accurately approximate any continuous 
function. 

 

GPR-RBF Gaussian processes are powerful for 
solving regression and classification 
problems by modeling possible 
functions and making probabilistic 
predictions. 

GPR is good for small datasets, gives uncertainty 
metrics, and allows for calculating confidence 
intervals. Decisions can be made on whether to 
refit predictions in a specific area. 

Polynomial 
Regression 

Polynomial regression involves 
adding polynomial terms to linear 
regression in order to account for 
non-linear relationships between 
dependent and independent 
variables. 

Using polynomial models is preferred for accurate 
data analysis with minimal errors and increased 
security. Visit surutinequate.com for a range of 
useful data resources. 

3. Methodology 

This study presents a particle-based simulation of chemical reactions in a 2D flow reactor 
environment, with the aim of optimizing the performance of chemical reactions by 
varying the geometry of the reactor. The primary objective is to develop a tool that can 
predict the outcome of a simple chemical reaction. To achieve this, a basic AI approach 
is applied to analyse the substantial dataset, discover meaningful trends in the simulation, 
and optimize the geometry of the chemical reactor. The design of the 2D chemical flow 
process reactor is demonstrated in Figure 1 (a), which comprises two input reagents with 
the same particle properties, including particle size, density, and viscosity. The walls of 
the geometry are simulated using fix solid particles boundary, which restricts the reagent 
particles' movement inside the boundary, as shown in Figure 1 (b). The pump force is 
applied to the right of the reactor tube, and the chemical reaction occurs during the flow.  

Multiple iterations are conducted to refine the design with different tube in order 
to analyse the performance of the chemical reactor by varying the tube length, pressure, 
flow speed, and temperature, as shown in Table 2. This approach, combined with 
machine learning techniques, provides a reliable and efficient method for optimizing 
chemical reactions in the 2D flow reactor environment. 
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Figure 1 (a) 2D CAD drawing constructing two input reagents, flow reactor tube and reacted product 

collection unit and (b) particle-based simulation of the reagents. 
 
 

Table 2. Four primary datasets with different combinations of hyperparameters 

Tube 
Length  
(unit) 

Pressure  
(atm) 

Max Flow Speed 
(unit s-1) 

Temperature 
(oC) 

16 {0.5, 1.0, 1.5} {0.5, 2.5, 4.5} {0,2,5,10} 
32 {0.5, 1.0, 1.5} {0.5, 2.5, 4.5} {0,2,5,10} 
48 {0.5, 1.0, 1.5} {0.5, 2.5, 4.5,7.5,8.0} {0,2,5,10} 
66 {0.5, 1.0, 1.5} {0.5, 2.5, 4.5,10.0,15.0,20.0} {0,2,5,10} 

4. Result and Discussion 

4.1. Machine Learning Technique 

An initial experiment is completed to determine the most appropriate machine learning 
model to incorporate into our DT. Assessing performance of a model involves evaluating 
its ability to perform within a selected evaluation framework. This can be accomplished 
through quantitative methods, such as calculating performance metrics like F1 score or 
Root Mean Square Error (RMSE), or through qualitative methods by seeking input from 
specialists in the field. It's crucial to choose machine learning evaluation metrics that 
align with the metrics that would improve with our machine learning solution. 

 
Table 3. Providing landscape for all three-machine learning technique with our initial data and create 

observation to determine best possible technique.   
RBF-NN GPR-RBF Polynomial Regression 

 

     

 
RMSE: 0.7449899 RMSE: 0.8723390 RMSE: 3.4454491 

 

After examining result in Table 3, it is become an apparent that it contains 
highly informative data. The table displays the landscapes created by three machine-
learning techniques applied to the initial dataset. The input variables, including tube 
length, temperature, flow speed, and pressure, were used to generate the output of the 
number of reacted particles. The plots in Table 3 are intriguing as they correspond to 

N.A. Nasruddin et al. / Machine Learning Informed Digital Twin for Chemical Flow Processes 75



 

these input values, creating a 5-dimensional plot. The plots in Table 3 display Tube 
length, Temperature, and reacted particles as the x, y, and z axis. It is also designed to 
showcase flow speed and pressure as 4th and 5th dimension by using color and point size. 
This feature makes the data easier to comprehend. When it comes to flow speed, the color 
change denotes the highest flow speed, with red indicating higher and blue indicating 
lower flow speed. Similarly, larger point size implies higher pressure, while smaller point 
size indicates lower pressure. It is difficult to determine which data representation leads 
to better output based on the plot alone. However, after analyzing the Root Mean Square 
Error (RMSE), it can be concluded that the RBF-NN method performs better than the 
other two. Despite using the same Radial basis function, GPR's performance was slightly 
inferior to that of NN. Polynomial regression did not fare well due to data variability in 
this case, resulting in a higher error rate. Therefore, RBF-NN has been chosen as the 
primary method for this research. 

4.2. Reaction Performance Evaluation 

The objective of a performance evaluation is to enhance the response of various features 
of the reactor. It requires the tuning of hyperparameters individually, and the simulations 
must be carried out manually. To evaluate the efficiency of the chemical reaction, one 
can calculate the average number of particles that have reacted. The performance is then 
graphed against various factors such as tube length, pressure, flow speed, and 
temperature on separate axes. Large error bars in the Figure 2 are resulted by the high 
standard deviation of the data. The simulation was conducted by testing different values 
for each feature to achieve an optimal reaction number. During the simulation, each 
feature interacted with one another, leading to an improvement in reaction performance. 
The mean value and standard deviation were calculated from each feature's reacted 
number. As the simulation included four features that affect performance, it is expected 
to have a large error if only one feature is plotted against performance.  
 

 
 

 
Figure 2 The trend of four reaction performance against tube length, pressure, flow speed and temperature 
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The simulation's performance can be effectively assessed through the valuable 
insights provided by Figure 2. To evaluate the performance of a chemical reaction, the 
number of reacted particles can be counted. The performance is influenced by various 
factors such as tube length, pressure, flow speed, and temperature. It has been observed 
that low pressure and longer tube length lead to better performance. Additionally, a high 
temperature and low flow speed condition is favorable for the reaction. Figure 2 indicates 
that the reacted number increases with the highest temperature and lowest flow speed, 
which shows consistency in the model. Furthermore, it has been noted that lowering the 
pressure can provide a better reacted value. However, the tube length doesn't have a 
significant correlation to determine changes in product yield. According to Figure 2, the 
performance of the reaction varies when the length of the reactor tube is altered. The 
error bar is also quite high, indicating the potential impact that changing the tube length 
can have on the chemical reaction. It's important to consider these factors when analyzing 
the results and making any future modifications to the reactor design. Although there is 
insufficient evidence to draw any conclusions from the graphs, they provide valuable 
insights that can help improve the simulation's performance. 

5. Conclusion 

Our research explored the use of machine learning to create digital models of chemical 
flow processes. We investigated three methods for predicting product yield, namely 
Radial Basis Function Neural Network (RBFNN), Gaussian Process Regression (GPR), 
and Polynomial Regression. After assessing the chemical reaction performance, our 
findings revealed that RBFNN was the most accurate, while GPR had slightly higher 
error rates. Moreover, our study highlighted that the performance of chemical reactions 
varies with different geometries, despite other correlated features. We concluded that 
Neural Networks-based machine learning can enable the creation of digital models that 
reduce the risks and costs of real chemical experimentation. These models can simulate 
various scenarios and outcomes, which provides valuable insights into reactor 
performance by adjusting the reactor geometry. 
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