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Abstract. Vessel Traffic Service Operators (VTSOs) are responsible for ensuring 

the safe and efficient operation of waterways. They use a Vessel Traffic 
Management System (VTMS) to provide real-time information and ensure the 

smooth flow of vessel traffic. However, the demanding nature of their work can lead 

to stress, which can impact their performance and lead to physical and mental health 
problems. To alleviate stress on VTSOs and reduce the risk of maritime accidents, 

investment in stress management technologies is important. In this study, we 

propose a novel machine learning model called 3D Mixture of Experts 
Convolutional Neural Network (3DMoEConvNet) to predict stress level for VTSOs 

based on their EEG signals. The 3DMoEConvNet model combines the strengths of 

3D Convolutional Neural Network (3D CNN) and Mixture of Experts (MoE) 
architecture to effectively capture both the spatial and temporal features of EEG data, 

while also addressing the issue of individual differences in EEG data. The 

3DMoEConvNet achieved accuracies of 99.80%, 99.80% and 99.84% for 2-Class, 
3-Class and 4-Class predictions, respectively. The proposed model provides a basis 

for the advancement of EEG-based stress detection systems. 

Keywords. Stress, electroencephalogram (EEG), neural network, individual 

difference, mixture of experts 

Introduction 

Vessel Traffic Service Operators (VTSOs) play a crucial role in ensuring the safe and 

efficient operation of waterways. They are responsible for providing essential services 

that ensure the smooth flow of vessel traffic. To perform their duties, VTSOs use a Vessel 

Traffic Management System (VTMS) that provides real-time information on vessel 

movements, weather conditions, and other important information[1]. However, the 

demanding nature of their work and the associated working environments can take a toll 

on VTSOs, leading to stress. Stress is a major concern for VTSOs because it can have a 

significant impact on their performance. When VTSOs are under stress, they are more 
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likely to make mistakes, and their decision-making ability may be compromised. 

Additionally, stress can lead to physical and mental health problems, such as fatigue, 

headaches, and depression, which can further impact their ability to perform their duties 

effectively. 

To prevent operators from experiencing excessive stress, recognising stress in its 

early stages is key. Based on literature review, there is currently no stress detection 

research specifically targeting vessel traffic service (VTS) or air traffic control (ATC). 

Existing stress management research in VTS/ATC settings tends to approach from a 

human factors analysis perspective. For instance, Borghini et al. [2] used multimodal 

signals to investigate the impact on air traffic controllers during stressful events. Kutilek 

et al. [3] studied heart rate variability of air traffic controllers in long-term stressful 

contexts. However, neither of these studies utilized these physiological signals for stress 

detection. Interventions are often implemented at the organizational level, such as the 

development and updating of training programs. This indicates a gap in stress detection 

research for VTS scenarios, and the experimental contexts in existing stress detection 

research differ substantially from VTS operations.  

Implementation of stress detection in high-stake industries such as VTS requires the 

consideration of several factors. Primarily, the ability to perform real-time stress 

detection with high accuracy is paramount. Given that emergency situations can arise 

unexpectedly in the VTS context, timely and accurate detection of stress levels among 

VTSOs is crucial to preventing potential catastrophes caused by stress. 

Electroencephalography (EEG), due to its high frequency and rich information content, 

is recognized to be frequently used in affective computing for mental state detection, 

including stress recognition. However, a lack of publicly available EEG datasets 

specifically targeting stress recognition has been identified. Consequently, the decision 

to design our own experiment has been made. To fill this gap,   the Stroop Test  reflecting 

the continuous operation context of VTSOs was chosen in our experiment design, data 

collection, and model validation.  

In recent years, using machine learning techniques such as Artificial Neural Network 

(ANN) for predicting stress has become increasingly popular. There has been a wide use 

of Electroencephalogram (EEG) for stress prediction as they are hard to conceal, which 

is advantageous for eliciting genuine emotions. This is helpful to measure the true state 

of mind of humans since EEG data directly represents the brain’s activity [4]. Common 

methods such as Convolutional Neural Networks (CNN), Graph Neural Networks 

(GNN), Long-short term memory networks (LSTM) have been used to perform EEG 

stress prediction. The aim of this study is to assess the effectiveness of a CNN-based 

stress prediction model using EEG data. This study will go beyond prior research by 

addressing the limitations of current stress prediction models. 

1. Related Work 

Recent advancements in EEG technology have prompted interest in deep learning 

techniques for stress or emotion prediction from EEG data [5]. This is driven by the 

improved quality and volume of EEG data and the success of deep learning in areas like 

computer vision and speech recognition. A primary obstacle in EEG analysis is the 

variability in EEG signals between individuals due to factors like personality traits, 

genetic variations, and brain chemical levels. This leads to substantial inter-subject 

variability in EEG signals [6]. 
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Fu et al. [7] devised a Symmetric Deep Convolutional Adversarial Network 

(SDCAN) blending CNN and adversarial theory for stress level classification in EEG 

signals. The adversarial aspect extracts invariant features from raw EEG signals, aiming 

to improve classification accuracy and address individual differences. SDCAN achieved 

87.62% and 81.45% accuracies in four-class and five-class stress predictions, 

respectively.

Song et al. [8] proposed two models. The Dynamical Graph Convolutional Network 

(DCGNN), capable of dynamically learning EEG channel relationships, achieved an 

accuracy of 79.95% for three-class emotion classification using the SEED dataset. The 

Variational Instance-Adaptive Graph (V-IAG) technique recognises interconnections 

between different EEG electrodes and measures the underlying uncertain information. It 

addressed individual differences and uncertain relationships between EEG channels, 

achieving an 88.38% accuracy for a three-class emotion classification [4].

Zhang et al. [9] introduced an architecture combining deep recurrent and 3D 

convolutional neural networks (R3DCNNs), achieving an average accuracy rate of 

88.9%. This method responds to the limitation of most mental workload assessment 

research focusing on a single task.

EEG data representation is a crucial aspect of deep learning analysis. The common 

method of converting EEG data into a 2D array neglects important spatial correlations 

between electrodes. Zhao et al. [10] proposed a 3D EEG data representation preserving 

both temporal and spatial information, potentially providing a more accurate analysis.

Another study proposed Multiscale CNNs and a biologically inspired decision fusion 

model for multimodal affective states recognition [10]. While they didn't predict stress, 

their 3D EEG representation and High Scale CNN architecture provide valuable insights. 

Their 9x9 2D matrix representing the 10-20 international system achieved an accuracy 

of 98.52% for the DEAP dataset and 99.89% for the AMIGOS dataset.

Figure 1. Left: 10-20 System, Right: 3D Representation.

Previous studies have independently addressed the challenges of individual 

differences and loss of spatial information and correlations between electrodes. However, 

there is a need for a stress prediction model that effectively tackles both issues 

simultaneously.
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2. Method 

2.1. Data Collection Experiment 

To collect stress dataset, we designed an experiment based on the Stroop Test [12]. In 

the experiment, ten participants (9 males and 1 female) aged between 25 and 33 years 

(M = 25.42, SD = 3.66), who were students or research staff from Nanyang 

Technological University, were involved. The study was approved by the Institutional 

Review Board of Nanyang Technological University (NTU-IRB), Singapore. The 

reference number is IRB-2022-015. All participants had normal or corrected visual 

acuity and were not suffering from any mental or physical conditions. This study chose 

the Stroop Test as it is a classic stress-inducing paradigm, proven through numerous 

experiments to reliably evoke stress. Other paradigms like the Trier Social Stress Test 

(TSST) [13] and the Montreal Imaging Stress Task (MIST) [14] use psychosocial 

pressure and images, respectively, to induce stress. TSST and MIST do not resemble the 

working scenarios of VTSO. The parallels between Stroop Test and VTSO scenarios are the 

operation task, continuous monitoring of a screen, and maintaining of situation 

awareness. 

The experiment contains 4 blocks, which aims to induce increasing stress levels. In 

block 1, subjects were required to watch a trial demonstration video on the designed 

Stroop test, in which the queries were automatically answered. In block 2, the 

participants were presented with colored-words  displayed in a  congruent color ink (e.g., 

the word “green”  was printed in green color ). In block 3,  incongruent colored-words 

were presented, (e.g., the word “green”  was  displayed in blue color ). In block 4,  

incongruent colored-words were presented and the participants were required to answer 

the queries in very limited time. The participants were required to reflect on their stress 

levels and answer a questionnaire after the practice session and after each block. The 

EEG signals were recorded using a 14-channel headset (Emotiv Epoc+ Pro) and filtered 

using a highpass filter of 1 Hz before being used for stress prediction tasks. The data was 

collected in a moving window of 10 seconds with a stride of 1 second.  

2-class. For the binary classification task, we chose data from Block 2 over Block 1 

as low-stress data to eliminate task-discriminative features. We selected data from Block 

4 as high-stress data as it has a higher likelihood of containing discriminative features 

related to mental stress. Hence, we utilised the data from Block 2 and Block 4 for the 

binary stress prediction task. This resulted in 6150 samples with a data size of 14 

channels and 1024 time steps per sample ([6150, 14, 1024]). 

3-class. For 3-class classification dataset, we selected data from Block 2, 3 and 4. 

This resulted in 9321 samples with a data size of 14 channels and 1024 time steps per 

sample ([9321, 14, 1024]). 

4-class. For 4-class dataset, we selected data from all 4 Blocks. This resulted in 

12331 samples with a data size of 14 channels and 1024 time steps per sample ([12331, 

14, 1024]). 

2.2. Data pre-processing 

For data pre-processing, we first perform Z-score normalisation on all the 3 datasets, this 

is to provide numerical stability, preventing the gradients of the neural network optimiser 

from exploding. To prevent the loss of spatial information of the EEG electrodes, we 

adopt the data pre-processing methodology used in [11]. This will help to retain the 2D 
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electrode’s topological structure. Firstly, for each sample, the dataset is reshaped into 

[samples*1024, 14]. After which, for each time step, the 14 EEG channels’ data are 

mapped into a 9x9 matrix, giving the shape of [samples*1024, 9, 9]. Then, the 9x9 

matrices are stacked into cubes of [128, 9, 9], this gives rise to a data shape of [samples*8, 

128, 9, 9]. In order for the dataset to be processable by 3D CNN, we have to reshape it 

into [samples*8, 1, 128, 9, 9]. This is the final shape of the EEG dataset, ready for 

prediction. Figure 2 gives a visual illustration of the mapping process.

Figure 2. Matrix Mapping [15].

2.3. Proposed Mixture of Experts (MoE) model

In this study, we propose a novel machine learning model for EEG stress level prediction

named 3D Mixture of Experts Convolutional Neural Network (3DMoEConvNet). The 

use of a 3D CNN is appropriate for this task as it is capable of retaining the spatial and 

temporal information present in the EEG data. The 3D CNN architecture allows the 

model to capture the patterns and relationships in the EEG signals over time and across 

different regions of the brain. In addition to the 3D CNN, the proposed model also 

employs a Mixture of Experts (MoE) architecture. The MoE architecture is designed to 

tackle the issue of individual differences in EEG data, which can lead to varying levels 

of stress among individuals. The MoE architecture allows the model to learn different 

experts for different individuals, which can lead to more accurate stress predictions for 

each individual. The proposed 3DMoEConvNet model combines the strengths of both 

the 3D CNN and MoE architecture to effectively capture both the spatial and temporal 

features of EEG data, while also addressing the issue of individual differences.

Figure 3. Mixture of Experts (MoE) model.
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2.4. 3D CNN Architecture 

In this study, the base model, also known as expert, is a 3D CNN. We adopt the same 3D 

CNN architecture as used by Zhao et al. [11] for their High Scale CNN due to its 

demonstrated effectiveness. By utilising the same architecture, we aim to leverage the 

strengths of the previous study and build upon its success. The details of the 3D CNN 

are shown in Table 1. 

2.5. Mixture of Experts (MoE) 

The MoE model is a machine learning technique that is introduced to address the issue 

of individual differences in EEG data stress prediction. Recently, the MoE model has 

seen remarkable success in the field of deep learning [15]. Typically, the MoE approach 

decomposes predictive modelling tasks into sub-tasks, trains a separate expert model on 

each one, creates a gating model that determines which expert to rely on based on the 

input to be predicted, and combines the resulting predictions. There are various methods 

for combining the predictions, including selecting the expert with the highest confidence 

from the gating model or taking a weighted sum prediction. In this study, we opt for the 

weighted sum prediction approach. This method involves combining the predictions of 

each expert and the confidence estimated by the gating network into a weighted sum. 

The model then selects the class with the highest weighted sum as its final prediction 

output. 

Table 1. 3D CNN Architecture. 

Layer Type Output Size Kernel Stride Padding 
Input [120, 1, 128, 9, 9] - - - 

Convolutional [120, 32, 128, 9, 9] (4, 3, 3) (1, 1, 1) same 

ReLu [120, 32, 128, 9, 9] - - - 
Pooling [120, 32, 64, 9, 9] (2, 1, 1) (2, 1, 1) - 

Convolutional [120, 64, 64, 9, 9] (4, 3, 3) (1, 1, 1) same 

ReLu [120, 64, 64, 9, 9] - - - 
Pooling [120, 64, 32, 9, 9] (2, 1, 1) (2, 1, 1) - 

Flatten [120, 165888] - - - 

FC 
Dropout 

[120, 1024] 
[120, 1024] 

- 
- 

- 
- 

- 
- 

FC [120, num_class2] - - - 

 

3. Result 

3.1. Model Training and Hyperparameters 

The training of the 3DMoEConvNet uses the Adam optimiser with an initial learning 

rate of 0.001 and follows the ReduceLROnPlateau schedule. This scheduler will reduce 

the learning rate when a metric has stopped improving. The model is trained using a 

batch size of 120. To ensure numerical stability, the epsilon of the optimiser is set to 1e-

2. The loss function we used is CrossEntropyLoss. The number of experts selected in 

this study was 4, in accordance with the methodology described by Chen et al. [15]. The 

 
2 Number of prediction classes 

Z. Xia et al. / EEG-Based Stress Recognition826



training is conducted using 10-fold cross validation mechanism. The training process is 

divided into two parts, with the first part consisting of 30 epochs and the second part 

consisting of 10 epochs. To validate the effectiveness of the proposed model, it is 

compared with the base model without the MoE module. 

3.2. Prediction Results 

The verification results can be seen in the following tables. 

 

Table 2. 2-Class Performance Comparison. 

 

Table 3. 3-Class Performance Comparison. 

 

Table 4. 4-Class Performance Comparison. 

 
 

Further analysis can be performed based on the results presented in Tables 2, 3, and 

4. 

4. Discussion 

For 2-Class and 3-Class prediction, the results obtained in Tables 2 and 3 shows that the 

base model and 3DMoEConvNet performed equally well in terms of all four metrics. 

The performance metrics did not provide any valuable trends or insights. However, for 

4-Class prediction, the 3DMoEConvNet demonstrated faster convergence to its optimal 

accuracy compared to the base model. The standard deviation across all the metrics for 

both 10 and 30 epochs are also lower for the 3DMoEConvNet as compared to its base 

model. The results shows that the MoE architecture can be a useful tool for more complex 

and comprehensive EEG analysis, has a higher capacity to learn more complex features 

than the base model and more reliable as the standard deviation is lower. This is 

evidenced by the fact that the 3DMoEConvNet was able to converge to its optimal 
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accuracy using fewer epochs compared to the base model. This suggests that the MoE 

architecture allows the model to learn faster and reach optimal accuracy more quickly. 

The faster convergence of the 3DMoEConvNet can be credited to its model complexity 

and capability to handle complex data structures (4-Class is more complexed and harder 

to predict as compared to 2-Class and 3-Class) and extract meaningful features from the 

EEG data. The use of multiple experts in the 3DMoEConvNet is a key feature that sets 

it apart from the base model. The multiple experts in the 3DMoEConvNet are designed 

to learn from different clusters of the EEG data, each specialising in a specific cluster of 

the EEG signal. This allows the 3DMoEConvNet to handle complex data structures and 

extract meaningful features from the EEG data. The use of multiple experts in the 

3DMoEConvNet has several advantages for EEG analysis. Firstly, it allows for better 

generalisation of the model. By having multiple experts, the 3DMoEConvNet can learn 

from different aspects of the EEG data, making it more robust to variations in the EEG 

data. Secondly, the utilisation of multiple experts in the 3DMoEConvNet makes it easier 

to find the optimal parameters for each individual model. This is because each expert can 

be optimised separately, allowing for a more fine-tuned model that can better handle the 

EEG data.  

The results obtained in this study supports the findings by Chen et al. [15]. In their 

experiment, they found that the Mixture of Experts (MoE) model performed similarly to 

their base model when using the original CIFAR-10 dataset but outperformed their base 

model when using the more complex CIFAR-10 Rotate dataset. The MoE model was 

able to achieve a higher accuracy than the base model when trained for the same number 

of epochs, indicating its ability to handle complex data structures. Similarly, in our 

experiment, when we trained both the base and MoE models for 10 epochs, the MoE 

model achieved a higher accuracy than the base model. This suggests that the MoE model 

is capable of handling complex EEG data structures and extracting meaningful features 

from the EEG data. It is important to note that we cannot determine whether the base 

models in Chen et al.'s experiment would perform equally well as their MoE counterparts 

if the number of training epochs was increased for the CIFAR-10 Rotate dataset. 

However, our results indicate that when trained for the same number of epochs, the MoE 

model outperforms the base model in terms of accuracy. These results align with the 

findings of Chen et al. [15]. 

5. Conclusion 

In conclusion, our study aimed to explore the potential of the MoE architecture in EEG 

stress level prediction and at the same time preserve the spatial information and 

correlations between electrodes. The results showed that the proposed 3DMoEConvNet 

outperformed the base model in terms of accuracy and convergence speed. The 

3DMoEConvNet's ability to handle complex data structures and extract meaningful 

features from EEG signals was a key factor in its superior performance. The results of 

this study are in line with previous findings that indicate the MoE architecture can 

improve performance in deep learning tasks. The proposed 3DMoEConvNet 

demonstrates the potential of the MoE architecture for EEG stress analysis and highlights 

its effectiveness in handling individual differences in EEG signals. Further research is 

needed to fully understand the potential of the MoE architecture for EEG analysis and to 

investigate its applications in other EEG-based tasks. 
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One area of future work is the selection of the number of experts in the 

3DMoEConvNet. In this study, we chose to use 4 experts, following the methodology 

described by Chen et al. [15]. However, there are other methods that can be used to 

determine the optimal number of experts, such as clustering algorithms or domain 

knowledge. Further studies could explore these methods to determine the optimal 

number of experts for different types of EEG datasets.  

An additional area of exploration could be the type of pooling or aggregation 

mechanism the MoE architecture employs to make the final prediction. The weighted 

sum prediction, also known as soft gating method, used in this study is solely dependent 

on the training optimiser’s algorithm, and may not be the best choice for all scenarios. If 

the algorithm is unable to learn the features in the EEG dataset, it is very difficult for the 

developer to debug as it trains and updates the MoE model’s parameters as one single 

complex model. Other gating and training methods, such as expert routing3 and training 

each expert on a subset of the data, may be more reliable and suitable for different EEG 

data structures. These methods require the use of more machine learning algorithms such 

as KNN clustering algorithm [16], to determine which subset the particular data belongs 

to. Further studies could explore these alternative gating and training methods to 

determine their effectiveness for EEG analysis. 

One significant constraint is the limited number of subjects included in the collected 

dataset. Further, the design of the experiment does not completely emulate the complex 

real-world VTS context, marking another limitation. However, this study aimed to verify 

the feasibility of our algorithm before moving to actual VTS settings. The intention was 

not to represent the entire population of VTSOs, but to provide a proof of concept for 

our proposed model. The number of subjects will be significantly increased in the next 

phase of the study when we collect data in  actual VTS scenarios. 

This study has proven that the 3D CNN base model is able to retain sufficient spatial 

and correlation information among the EEG electrodes and there is significant potential 

for further exploration and improvement in the use of the MoE architecture for EEG 

stress analysis using deep learning. Future works should focus on optimising the number 

of experts, optimising the training time and  to explore the effectiveness of other pooling 

or aggregation mechanism to fully realise the potential of the MoE architecture. As for 

future work, while the focus has been on improving the algorithm, we will also consider 

more deeply how we can address stress management for VTSOs, which was our original 

question. We plan to collect data in real VTS settings and test the proposed model to 

further improve our research's relevance and impact on the maritime industry. 
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