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Abstract. In today's fiercely competitive industrial environment, digital 
transformation and smart manufacturing have become important strategies for 

enhancing competitiveness. Digital transformation utilizes advanced technology 

and data analysis to make manufacturing processes more intelligent and automated, 
improve product quality, reduce production costs and time, and increase production 

efficiency. Smart manufacturing further applies machine learning, deep learning, 

and artificial intelligence to make the production process even more intelligent and 
automated. However, existing object detection models such as YOLO can only 

provide rectangular bounding boxes and cannot determine the actual rotation angle 

and inclination of objects, and lack discourse on hardware integration. Therefore, 
this study proposes a deep learning-based method framework that combines Yolov5 

and Mask R-CNN to detect objects in real-time and calculate the object's center 

point coordinates, reference point coordinates for rotation direction, and inclination 
angle. This is integrated with a depth camera to obtain the distance between the 

robotic arm and the object, providing all the information required for the robotic arm 

to grasp the object. In simulated scenarios of stacking shoe insoles, the model 
proposed in this study achieved an accuracy of 97%. This technology can be applied 

in the factory production process, allowing robotic arms to accurately grasp objects 

from cluttered piles at the correct coordinates and angles, and perform sorting and 
assembly tasks. It can also help companies reduce costs and errors caused by human 

intervention, thereby enhancing their competitiveness. 
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Introduction  

Many factories are gradually introducing automation technology in order to reduce 

production costs, minimize human errors, and increase output. However, in computer 

vision, using a robotic arm to grip objects is a classic problem, especially in practical 

industrial applications where stacking and irregularly arranged objects are common. For 

example, in certain processes that use injection molding machines to manufacture 

products, the products that are ejected and dropped onto the collection platform will be 

stacked at different angles, requiring additional sorting and arrangement processes. This 

not only increases production costs but also extends the entire production cycle time. To 

solve this problem, manufacturers can use two methods to extract targets from stacked 
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objects at the correct angle: one is to let personnel manually pick up objects, but with 

increasing work time, personnel are prone to fatigue, and accuracy will decrease. The 

other is to use computer vision to assist robotic arms in gripping objects. This method 

can make overall performance more stable and is relatively cheaper than human labor. 

This study integrated the results of two object detection models, Yolov5 and Mask 

RCNN, to detect objects that can be successfully gripped in the case of stacked objects. 

It not only identifies their position, tilt angle in front, back, and left and right directions, 

but also calculates the clockwise rotation angle to achieve real-time detection. 

1. Literature Review  

1.1. Development of Object Detection 

In the field of deep learning, object detection models can be divided into two-stage 

detection and one-stage detection. Two-stage detection represents models that focus on 

computational speed and pursue accuracy. On the other hand, one-stage detection 

represents models that aim to complete the detection process in one step and prioritize 

computational speed [1]. 

The most well-known model for one-stage detection is YOLO. YOLO treats the 

prediction of bounding boxes and object class recognition as a regression problem, using 

only one CNN to process the image and without the need for candidate region proposals. 

This allows YOLO to detect objects faster. Its calculation method involves dividing the 

input image into S*S grids, where each grid predicts B bounding box coordinates, 

confidence scores, and probabilities of object classes. Finally, the model outputs the best 

bounding boxes and object classes using non-maximum suppression (NMS). Table 1 

shows the evolution of YOLO versions. 

Table 1. Comparison of joint detection methods. 

 Advantages Disadvantages 
YOLOv1[2] One of the advantages of the 

one-stage detection model is that 

it has fast detection speed, up to 

45 FPS. 

The recognition of nearby 
objects is poor, and each grid can 

only recognize one object. 

YOLOv2 [3] The input image is no longer 

restricted to a fixed size, and 

any input dimension can run 
throughout the entire network. 

The speed has been increased to 

67 FPS. 

The recognition of small and 

nearby objects is still poor, and 

the drawback of YOLOv1 cannot 
be solved. 

YOLOv3 [4]  The main highlight is not in 
speed, but in the detection 

capability and quantity of small 

objects. 

Performance drops significantly 
in the metric of map>0.5, and the 

final map is worse than 

RetinaNet. 

YOLOv4 [5]  Efficiency, accuracy, and 

detection speed are all better 

than YOLOv3. 

The model has a larger storage 

capacity, which makes it 

unsuitable for use on mobile 
devices. 

YOLOv5 [6] The model has a small storage 

capacity and boasts faster 
detection speed and excellent 

precision. 

Translation: Slightly inferior to 

YOLOv4 in originality and 
precision. 
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The typical example of two-stage detection is the Region-Based Convolutional 

Neural Network (R-CNN) model proposed by Girshick in 2014 [7]. He et al. proposed 

Mask R-CNN based on Faster R-CNN [8]. Mask R-CNN can not only accurately detect 

various objects in the image but also draw masks based on the object's contour to achieve 

instance segmentation, which will be introduced in Section 3-2. The Mask R-CNN 

method has been widely used in various industries, such as Burke et al. [9] using Mask 

R-CNN to classify stars and galaxies in astronomical images, Hu et al. [10] applying it 

to identify lung regions in chest X-ray images, and Yang et al. [11] and Li et al. [12] 

using Mask R-CNN for object recognition in remote sensing photos. Jia et al. used Mask 

R-CNN to recognize overlapping apples in the forest to improve the accuracy of the 

automatic harvesting robot [13]. The evolution and comparison of two-stage detection 

models are shown in Table 2. 

Table 2. Comparison of joint detection methods. 

 Advantages Disadvantages 
R-CNN [14] Selective search 2000 possible 

regions. 
Each region needs to be adjusted 
to the same size, which leads to 

slow computation. 

SPP-net [15] The pooling layer can take 

inputs of multiple scales and 
produce fixed-size output 

feature maps. 

The pooling layer extracts 

feature maps at a slow speed. 

Fast RCNN [16] Combining R-CNN with a 
simplified SPP-net pooling 

layer, known as ROI pooling, 

can improve detection speed. 

Corrected: Selective search to 
find all candidate boxes is still 

very time-consuming. 

Faster RCNN [17] Replacing selective search with 
RPN improved both precision 

and speed. 

It can only output rectangular 
bounding boxes with no angle 

and their corresponding class. 

Mask RCNN Fehler! V
erweisquelle konnte nicht 

gefunden werden.[8] 

Draw masks based on the 
object's contour to achieve 

instance segmentation. 

It requires a larger dataset when 
performing multi-task training. 

 

Two-stage and one-stage object detection models have their respective advantages in 

terms of detection accuracy and speed. Compared to one-stage detection, two-stage 

models require additional algorithms or neural networks to extract regions of interest 

(ROIs) in advance, from the earliest sliding window to selective search, and then to faster 

R-CNN with Region Proposal Network (RPN), which can improve the accuracy of 

bounding box location. However, the cost is that the detection speed is slower. On the 

other hand, one-stage detection solves the problem of object localization and 

classification simultaneously using a single neural network, making it faster than two-

stage detection. 

1.2. Smart manufacturing 

Nowadays, the goal of the manufacturing industry is to enhance its competitiveness and 

ensure long-term growth by integrating cutting-edge information and communication 

technology. Smart manufacturing, considered the fourth industrial revolution, is seen as 

a new paradigm that redefines the operational model of manufacturing through 

intelligence-driven approaches [18]. Smart manufacturing utilizes modern information 

technologies such as the Internet of Things (IoT), artificial intelligence (AI), big data 

analytics, and machine learning to optimize the manufacturing process. It combines 
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production, machinery, products, and information technology to achieve more efficient, 

flexible, and sustainable production methods [19]. 

Deep learning has found numerous applications in the field of smart manufacturing. 

For example, in defect detection and quality control, the Mask R-CNN model can 

automatically detect defects in the wafer manufacturing process, reducing the need for 

manual inspection and improving product quality [20]. In predictive maintenance, deep 

neural networks (DNNs) can analyze sensor data from manufacturing equipment, predict 

equipment failures or maintenance needs, optimize maintenance plans, and reduce 

downtime and costs [21]. 

A robotic arm is a mechanical device that can mimic human arm movements, 

typically composed of a mechanical structure and a control system. It can be applied in 

various industrial, medical, and logistics applications [22]. Deep learning, as a subfield 

of machine learning, enables machines to automatically learn features from large 

amounts of data and make predictions or classifications. Object detection has seen 

significant development in the context of robotic arms, but there is limited literature 

describing subsequent applications that integrate hardware devices. For example, 

integrating object detection with depth cameras allows robotic arms to measure the 

distance between objects and the arm by utilizing depth information. The object's center 

position can be obtained through object detection for gripping purposes. Additionally, 

the depth camera can provide the normal vector of the object's plane, enabling the 

estimation of its tilt angle. 

2. Research methods 

The methodology of this research can be roughly divided into three stages. The first stage 

involves data preprocessing, which includes generating the training dataset and 

annotating the images. In the second stage, the images and annotated files are fed into 

the Yolov5 and Mask R-CNN models for training. The third stage involves integrating 

and analyzing the training results. By analyzing the results from Yolov5 and Mask R-

CNN, the positions, tilt angles, and rotation angles of objects suitable for robotic arm 

grasping can be determined. 

2.1. Data Preparation 

In this research, the object patterns in the original images are individually removed, and 

then the Adobe Illustrator© software is used to randomly rotate and stack the objects 

sprayed onto the canvas. This process simulates a randomly arranged scene. A total of 

1600 RGB images with a size of 1600*1200 pixels will be generated as the dataset. The 

labelme© software is used for manual annotation of the training data for Mask R-CNN. 

During the object annotation process, the complete and unobstructed objects are selected 

by drawing bounding boxes along their contours to extract the object masks. Roboflow 

is then used for manual annotation of the training data for Yolov5. While annotating the 

objects, efforts are made to place the center point of the bounding box within the detected 

object to facilitate subsequent operations. Finally, the annotated data for both Mask R-

CNN and Yolov7 are used to train their respective models. 
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2.2. Model Training 

We will divide section 3.2 into two parts. In section 3.2.1, we explain the architecture of 

the Yolov5 model. In section 3.2.2, we introduce the Mask RCNN model. 

2.2.1 Yolov5 

YOLO is a single-stage object detection method that uses a convolutional neural network 

architecture to determine the position and type of objects in an image, thereby improving 

recognition speed [23]. Therefore, YOLO is faster in detection than two-stage models. 

The network structure of YOLOv5 [23] consists of three parts: BackBone, Neck, and 

Output. 

The BackBone is a convolutional neural network that aggregates different 

granularities of images and forms image features. The Neck layer fuses feature maps of 

different levels to obtain more contextual information, reduce information loss, and 

enhance the model's detection capability for objects of different scales. Through the 

image transformation convolutional features, the model predicts bounding boxes of 

different sizes [23]. After feature extraction through BottleneckCSP and repeated 

convolution, the Output layer establishes a convolutional kernel through Conv2D. This 

convolutional kernel convolves the layer input to generate the output tensor and obtain 

the predicted results of the target object. 

2.2.2 

The Mask RCNN is an extension of the Faster RCNN model for achieving instance 

segmentation. Instance segmentation is similar to general object detection, but the output 

result is a mask of the object instead of just a bounding box. Its purpose is to find the 

contour of the target object and distinguish between different individuals. The Mask 

RCNN adds a branch behind the Faster RCNN to predict the mask and also improves the 

original ROI pooling by introducing ROI align. 

2.3. Model validation 

To evaluate a model, we first use a confusion matrix to measure its performance on each 

task [24], which consists of counting the number of True positives (TP), True Negatives 

(TN), False positives (FP), and False negatives (FN). True positive indicates that the 

model successfully detects an object that exists in the image being detected; False 

positive means that the model detects an object where there is no object in the image; 

False negative indicates that the model fails to detect an object that exists in the image 

being detected; True negative means that the model correctly does not detect an object 

where there is no object in the image. As there are countless regions in the image being 

detected that do not contain objects of interest, True negative has little meaning in object 

detection tasks and its value is essentially infinite. 

2.4. Analysis and Integration 

This research utilizes Yolov5 to obtain the bounding box, center point, and depth 

information of objects. By applying singular value decomposition (SVD) to the nine sets 

of three-dimensional coordinates within the bounding box, the normal vector of the 
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object plane is calculated. The SVD approach decomposes the coordinate matrix, and the 

last column (or row) of the resulting matrix represents the normal vector. Based on the 

coordinates of the normal vector, the tilt angles in the left-right and up-down directions 

can be determined. 

The analysis of Mask R-CNN results reveals that the generated masks consist of a 

matrix of True and False values (length * width * number of classes). Python's OpenCV 

package is then used to analyze each image. The preprocessing steps include blurring 

and grayscale conversion. The minimum bounding rectangle function is employed to 

draw the smallest rectangular box that fits the object contours. Additionally, the area of 

each object mask is calculated as a filtering criterion in the second round. If the mask 

area does not meet a predetermined standard (e.g., a fixed percentage of the complete 

object area), the aforementioned operations are not executed. Finally, the integration of 

Yolov5 and Mask R-CNN models is performed to determine the clockwise rotation angle 

of the objects. 

Currently, the coordinates of the reference point and the center point of the object 

have been obtained using the aforementioned methods. The slope between the two points 

can be calculated, and then converted to radians. Arctan (inverse tangent) is commonly 

used to calculate the inverse tangent value of a given ratio. The input of the arctan 

function is a ratio (typically represented as a slope), and the output is the corresponding 

angle value. After obtaining the radians, they can be converted to degrees. 

To confirm that the coordinates of the reference point and the center point belong to 

the same object, the two-dimensional matrix generated by Mask R-CNN, consisting of 

True and False values, is used for verification. If both the reference point coordinates 

and the center point coordinates fall within the generated mask by Mask R-CNN, it 

indicates that they belong to the same object, thereby determining the object's rotation 

angle. By integrating the above methods, complete information about the object can be 

obtained, including its three-dimensional coordinates, left-right tilt angle, up-down tilt 

angle, and rotation angle, totaling six values. 

3. Case Study 

The subject of this paper is a large-scale joint venture footwear manufacturing company, 

recognized globally for its shoe production and development technologies, and trusted 

by renowned international brands. In the production of insoles, the company utilizes 

injection molding machines, and the ejected insoles fall onto a collection platform. 

However, the improper collection and arrangement of the insoles can lead to line 

blockages and delays. Additional manpower and time are required to collect and organize 

the insoles, ensuring the operational efficiency of the production line. However, as 

working hours increase, employees not only become fatigued but also experience 

reduced efficiency in sorting the insoles. Therefore, the company aims to replace manual 

labor with robotic arms for the tasks of gripping and organizing the insoles, resulting in 

more stable overall performance and relatively lower costs compared to human labor, 

while also reducing the insole processing time. 

In this chapter, the research will follow the steps described in Section 2 and apply 

them to the created dataset. In Section 3.1, the generation of training data will be 

explained, including image formats and annotation rules. In Section 3.2, the application 

of the custom dataset in YOLOv7 and Mask RCNN models and the generation of results 

will be introduced. The process of integrating the results from these two different models 
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will be described in Section 3.3. Finally, in Section 3.4, common object detection 

evaluation metrics will be used to assess the performance of the models. 

3.1. Data Preparation 

The case study involves a large Sino-foreign joint venture shoe manufacturing company 

that produces shoe insoles using injection molding. The resulting insoles are randomly 

placed on a receiving platform and overlap with each other. Obtaining relevant datasets 

for this scenario is difficult in real life, so this study used a few images provided by the 

manufacturer to remove the background of the insole pattern. Adobe Illustrator© 

software was then used to randomly rotate and spray the insole icons onto a canvas to 

simulate scattered insole images. A total of 1000 RGB images with a size of 1600*1200 

pixels were generated as the dataset. Roboflow was used to label the entire insole and 

the head of the insole as the training dataset for Yolov5, followed by using labelme© 

software to label the masks. When labeling the insoles, only complete insoles in the 

images were selected. 

3.2. Environment Setup for Training Models 

In this study, we used Ultralytics' YOLOv5 to recognize shoe insoles and toe caps. The 

data for YOLOv5 was divided into 1000 training images and 30 test images. We used 

experimental design to optimize the parameters by adjusting the training steps (Epoch), 

learning rate, training batch size, and optimizer. We used the ��(3
�
) orthogonal table for 

the experiment, and the accuracy was measured using the validation set. Finally, we used 

the Adam optimizer, set the learning rate to 10^-4, the batch size to 16, and the epoch to 

300. The training time for one iteration was about 6 hours. During the training process, 

there was no significant fluctuation in the loss value of the training and validation sets, 

indicating that overfitting did not occur. At the end of the training process, the total loss 

value converged to about 0.002, which is less than the acceptable value of 0.05 (Kulkarni, 

Dhavalikar, and Bangar 2018), indicating that the model's prediction results were 

excellent. The accuracy of predicting shoe insoles was 98.2%, while the accuracy of 

predicting toe caps was 95%. 

We used the open-source code of Mask RCNN on GitHub to implement the detection of 

insoles. The dataset used to train the Mask RCNN model consists of 272 training images 

and 28 test images, which are completely identical to the images used to train YOLOv5. 

After converting the annotated JSON file to the required files for the model (including 

the YAML file for storing labels and the PNG file for masks), we started training the 

model. The detection results of Mask RCNN generate pixel-level masks. After analyzing 

the code for the output results of Mask RCNN, we found that the object mask is 

composed of a True or False array (height * width * number of classes). Truly represents 

the masked area, while False represents the unmasked area. 
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3.3. Analysis and Integration of Results 

After running Yolov5, we obtain the coordinates of the center points of the insole and 

the insole head. By using the results of both, we can calculate the clockwise rotation 

angle between the insole and the vertical line. We then use the Mask RCNN mask to 

determine if the object boxes of the insole and the insole head belong to the same insole. 

By performing SVD decomposition on the object box of the insole, we can obtain the 

normal vector of the box's plane to calculate the left-right and up-down tilt angles of the 

insole (Figure 1). 

 

 
 

Figure 1. Object box of the insole. 

3.4. Discussion 

In this study, we combined Yolov5 and Mask RCNN models to overcome the limitations 

of previous research in practical applications. In real-world scenarios, objects are usually 

randomly arranged and stacked. In addition to incorporating angle information into the 

grasping conditions, it is also necessary to consider the issue of object tilting due to 

stacking. Moreover, real-time detection is often the best performance for application in 

robotic arms. This study solved several challenges in grasp detection by integrating two 

object detection models: (1) bounding boxes with angle information, (2) determining the 

actual angle of the object, (3) obtaining object tilt angle information, (4) integrating deep 
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learning into hardware devices to apply both functions and most importantly, (5) 

selecting suitable targets for grasping in overlapping situations. 

4. Conclusion and Future Development 

Due to the limitations of current object detection techniques in practical applications, this 

study integrates two deep learning models to address the real-world problem of stacking 

and irregular arrangement of objects. In the model validation tests, the proposed 

integrated model of YOLOv7 and Mask R-CNN achieved an accuracy rate of over 95% 

in identifying graspable objects. Since YOLO model is used as the foundation for overall 

detection and combined with depth cameras, real-time detection is achieved. The 

contributions of this study can be divided into academic and practical aspects. 

Academically, it integrates the results of two object detection models on the basis of real-

time detection, improving both accuracy and efficiency. Additionally, it solves the 

problem of YOLO model's inability to calculate real angles. Finally, by calculating object 

angles using bounding boxes and integrating depth cameras, information about object tilt 

angles is obtained. In terms of practical applications, this study contributes in the 

following ways: firstly, the case study demonstrates high detection accuracy, which can 

replace manual labor and reduce labor costs. Secondly, the system enables real-time 

detection, shortening the grabbing operation time and improving production efficiency. 

Lastly, this study provides a system that offers real-time detection, distance measurement, 

determination of tilt angles, and rotation angles, reducing equipment expenses for 

businesses and possessing practical application value. Furthermore, the deep learning 

approach proposed in this study can be widely applied to different datasets, especially 

those with characteristics such as single-class objects, objects stacked on top of each 

other, directional properties, and random arrangement. Therefore, the proposed 

methodology has broad applicability in practical applications. 

Future research directions include training the models using real-world datasets and 

increasing the number of samples in the dataset to improve detection accuracy. 

Additionally, incorporating more variations in images, such as lighting and shadows, can 

enhance the model's generalization capabilities. Furthermore, this study will explore 

techniques such as data augmentation and self-training to increase the quantity of training 

data. In real-world environments, overlapping of different objects is common, so efforts 

will be made to improve the model's ability to handle such scenarios. 
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