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Abstract. Robotic Mobile Fulfillment System (RMFS) is a well-known automated 
parts-to-picker system that is highly suitable in a fast-moving warehouse for 

handling critical challenges in the e-commerce industry. Implementing this system 

in the e-commerce industry has been shown to boost the throughput compared with 
the traditional picker-to-parts picking system. Nevertheless, there are still several 

ways to increase the efficiency of the warehouse. Therefore, this study proposes 

product-to-Pod or SKU-to-Pod assignment and replenishment policies that can 
increase warehouse efficiency using a simulation approach. There are three SKU-

to-pod assignment policies evaluated in this study. They are Random Assignments, 

One Pod One Class, and Mix Class One Pod assignments. In addition, four 
replenishment policies, including the Emptiest Pod, Pod Inventory Level, 

Warehouse Inventory-SKU in Pod, and Stockout Probability, are also simulated. 

The simulation results show that the Mix Class One Pod assignments combined with 
Warehouse Inventory-SKU in Pod is the best policy. The SKU-to-pod policy can 

improve pod utilization by increasing pick units in each visit. Pod with more SKU 

types is likely to fulfill more orders. The replenishment policy has the role of 
maintaining the inventory of the warehouse and keeping the pod at a high service 

level. Other than that, replenishment triggers reduced visits to the picking station. A 

pod with insufficient capacity could not be assigned with the new order, although it 
already has the most order assigned.  

Keywords. Robotic Mobile Fulfillment System, Pod Replenishment, SKU 

Classification, Pod Utilization. 

Introduction 

Warehouse design has a role in maintaining and improving efficiency and reducing 

warehouse distribution costs [1]. There are five main groups of warehouse systems 

“picker-to-parts,” “pick-to-box,” “pick-and-sort,” “parts-to-picker,” and “completely 

automated picking” [2]. In parts-to-picker warehouse integrated with the Internet of 

Things such as data management, sensors, robot, and many other things to synchronize 

all warehouse processes. Robotic Mobile Fulfillment System (RMFS) is one 

breakthrough in implementing e-commerce warehouses and is categorized as the parts-

to-picker system. Kiva System, as one of the innovative approaches, uses hundreds of 
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custom-built mobile robots or automated guided vehicles (AGVs) that carry small 

shelving units (Pods) and deliver them to the assigned stations (Picking or Replenishment 

Station) [3]. With proper management or strategies, it can help to speed up the order-

picking process. Therefore, this study aims to improve the operation strategies in RMFS.  

Some activities directly related to the order picking process are SKU-to-Pod 

assignment and replenishment. To increase pod utilization, SKUs dimensions, cycles, 

characteristics, and popularity are considered factors in assigning SKUs to pods [4]. The 

replenishment policy is designed to avoid stock out of SKUs which can delay orders 

fulfillment and reduce pod utilization. In a traditional warehouse or “pickers-to-parts,” 

replenishment is always triggered by each SKU’s inventory level. If the inventory level 

of the SKU reaches a certain level, it will order a certain quantity [5, 6]. However, the 

RMFS’s replenishment considered pod condition containing many SKU types. Pod 

condition is influenced based on the pod’s location, free space, and frequency being 

picked, and the pod’s inventory level of an SKU is considered as the trigger for the 

replenishment [7]. After the pod was triggered to be replenished, AGV delivered the pod 

to the replenishment station. AGVs could be assigned only for the picking/replenishment 

process [8] or both processes. This assignment also influenced the time for the pod to get 

replenishment. 

This study aims to design a replenishment policy and SKU-to-pod assignment 

design, which can maximize pod utilization by considering the inventory level. There are 

some scenarios for SKU to pod assignment and the replenishment proposed in this study. 

This study applies a simulation to evaluate the proposed scenarios.  

1. Literature Review 

The literature review briefly discusses some basic concepts in RMFS, including the 

components, basic operations, and inventory in the RMFS. RMFS is one of the 

breakthroughs in warehouse systems to adapt to e-commerce disruption. AGVs, Pods, 

Replenishment Stations, Picking Stations, and Charging Stations support this system. 

AGVs bring the pod to picking or replenishment stations and then bring the pod back to 

the storage area. One of the advantages of this system is eliminating the need for human 

movement in the storage area [8, 9]. Pods have the role of SKU storage which is divided 

into a few compartments. AGV can carry a pod weighing around 450 – 1300 Kg, 

depending on the pod size [10].  

The process of RMFS starts when there is an order enters the system. There are two 

types of orders: picking orders and replenishment orders. Picking order assigned to the 

pod which has the required SKU. AGV picked the pod from its location and delivered it 

to the picking station. After finishing the picking process, AGV returned the pod to the 

empty storage area. A replenishment order is triggered when the pod reaches a certain 

inventory level [7]. The assignment of SKU to pod should be considered to provide an 

efficient picking process.  

SKUs to Pods assignment is described as SKUs distribution to all pods that are 

limited to single type SKU in one pod or multiple types SKU in one pod. This assignment 

influenced the number of units being picked from the shelf. There are three issues related 

to this assignment. They are a combination of SKU types in one pod, SKU quantity in 

one pod, and SKU distribution in other pods [11, 12]. After considering these factors, 

SKUs can be assigned as single SKUs in one pod and multiple in one pod (mixed shelves). 
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A single SKU in one pod is suitable when there are large quantity orders. However, 

mixed shelves are more suitable in e-commerce which has small quantity orders [13].  

Multiple SKUs can be assigned randomly or following a policy to one pod. Many 

policies can be used, like SKU similarity [7, 14, 15], Association Rules, and ABC 

classification [16]. In SKUs similarity, the pod requires maximizing all SKUs similarity. 

The association rules approach has the same objective of SKU similarity, but it considers 

the most frequent combination of the SKUs. In ABC classification, the SKUs are 

classified by the popularity of the demands and SKU types. 

Inventory management has an important role in the warehouse management system. 

The main purpose is to maintain product availability in the warehouse. A replenishment 

strategy which not designed properly can lead to overstock or stock out in the warehouse, 

and this can cause a bullwhip effect or disruption to the entire supply chain process [17]. 

There have been many studies discussing inventory management, especially 

replenishment policies such as [5, 6, 18-20]. However, the inventory policy needs to be 

adjusted in the RMFS warehouse using a pod that contains single or multiple types of 

SKUs. RMFS replenishment needs to consider the pod’s condition, which has the most 

urgent condition that needs to be replenished. 

2. Methodology  

This study proposes the SKU-to-Pod assignment and replenishment policies to improve 

warehouse efficiency. The proposed policies are evaluated using a simulation approach. 

2.1. Simulation Layout 

The RMFS warehouse replicated in this simulation layout consists of three areas: a 

picking station area, a replenishment station area, and a storage area. The layout for this 

simulation is shown in Figure 1. 

 

Figure 1. Layout Simulation. 

2.2. Process Flow 

RMFS process is divided into a few parts based on the relation of each resource. The 

RMFS process flow can be seen in Figure 2. There are six resources involved in the 
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system: order, SKU, pod, robot (AGVs), picking station, and replenishment station. The 

interaction between each resource includes SKU to Pod assignment, order arrival, order 

to pod assignment, pod sequencing, robot to pod assignment, robot routing, robot to 

stations (Picking station and replenishment station), robot to storage assignment, pod to 

replenish, and SKU to replenish. 

1. SKU to Pod Assignment. This study applies three scenarios for SKU to Pod 

assignment. They are a Random assignment, One Pod One Class, and Mix Class 

One Pod assignment. Random assignment randomly assigns the SKU to the pod 

based on the SKU limit in the pod. It is used as the baseline. One class one pod uses 

an ABC rule to classify the number of pods based on 60%, 25%, and 15% pod of 

SKU A, B, and C, respectively. In the Mix class one pod assignment, a pod consists 

of several types of SKUs. The composition of SKU types is defined based on the 

ABC rules. 

2. Order Arrival. This study generates the arrival time following a certain distribution. 

Each arrival time consists of one or more orders with one type of SKU. The total 

amount of orders generated is between one and two[21]. The type of SKU is based 

on the following ABC rule where 10% of the SKU is 60% of the order, 30% of the 

SKU is 25% of the order, and 60% of the SKU is 15% of the order. 

3. Order to Pod Assignment. After generated, each order is assigned to a pod which 

has the earliest due-date order and has enough capacity. SKU with sufficient 

capacity picked as the order to pod result. Otherwise, it checked another pod to 

assign. It means that one pod could serve more than one order. 
4. Pod Sequencing. After the order-to-pod assignment, the system sorts the pod based 

on the earliest due date of the order. This rule can determine the urgency of the order 

in the pod. 
5. Robot to Pod Assignment. After the order-to-pod assignment, the pod is labeled as 

a selected pod. An available AGV is assigned to pick the selected pod with the 

earliest due date and nearest distance. The total pod that is being considered is 

double the number of available AGVs. This assignment used the Manhattan distance 

to calculate the distance [22] and the Hungarian algorithm [23] to pair the AGVs 

with the pods. Distance calculation considered all the possibilities of the selected 

pod with the starting and ending intersections[24]. This distance is used by the 

Hungarian algorithm to find the nearest AGV.  
6. Robot Routing. In this simulation, the routing policy follows previous research 

using a Simple Routing with Traffic Policy[24]. The AGVs routing is based on the 

direction in the aisle. There is an exception where the AGV can move beneath the 

pod horizontally to the destination in the same pod batch. The traffic policy used is 

deadlock and collision prevention. Also, in each intersection AGV horizontal aisle 

will be prioritized. 
7. Robot to Stations Assignment. An AGV that has been assigned to the selected pod 

should move to the station based on the order. The AGV is assigned to the station 

with the least AGV waiting in picking or replenishment order. Assign AGV to the 

station with more AGV increased the queuing time in the station. 
8. Robot to Storage Assignment. After the picking or replenishing, the AGV must 

bring the pod back to the storage area. First, list all the possible empty locations in 

the storage area. This study utilizes the Hungarian algorithm to determine the nearest 

open location from the station. 
9. Pod to Replenish. After a pod finishes a picking process, the system evaluates the 

SKU quantity in the pod. AGV directly delivers the pod to the replenishment station 
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if the pod needs to be replenished. This study defines four policies that trigger 

replenishment. They are the Emptiest Pod, Pod Inventory Level, Warehouse 

Inventory-SKU in Pod, and Stockout Probability. As a basic rule, this study defines

that it should be replenished if the Pod Inventory Level is 60% of the total capacity.

When a pod goes to the replenishment station, all SKUs are refilled to the maximum 

capacity. 

Figure 2. RMFS Process Flow and The Relation Between Each Resource.

This study proposed four replenishment policies. These policies are designed to 

balance the inventory level of the warehouse. The pod urgency triggers the replenishment

after finishing the picking process. These are the replenishment policies used in this 

study:

a) Emptiest. This policy sorts all the pods in the system and labels the pod which has 

the lowest inventory level. However, if the lowest pod has not been assigned to the 

picking station, it will stay idle until an AGV is assigned.

b) Pod Inventory Level. This policy is considered the inventory level of a pod without 

considering the SKU types. First, calculate the index of the pod-j inventory level

�� = ∑ ���
��
� 	�
 , � ∈ , where ��� is the quantity of SKU-i in Pod-j, �� is total SKU 

types in pod-j, and 	� is the total unit capacity of pod-j. The replenishment trigger 

of pod �, �� = 1 if �� < ��, where �� is pod inventory level. Otherwise, �� = 0. If 
�� = 1 the pod is labeled to get replenished. After labeling a pod as “get 

replenished”, AGV brought the pod directly to the replenishment station. In the 

replenishment station, SKUs that have already been decreased got replenished, and 

the total service time of the replenishments is dependent on the total of SKUs that 

need to replenish. 

c) Stockout Probability. This policy has the same method as the pod inventory level 

but considers the stockout probability. The stockout probability can be calculated by 

considering the order estimation of SKU in the pod. Order generated based on the 

exponential distribution. The total estimation of orders in one day is 36,000 orders. 

y
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The picking time uses the alpha of the gamma distribution parameter. Then, it is 

generated based on the ABC rule proportion for seven days and summarized in 

descriptive analysis. The descriptive analysis is shown in Table 1. 

Table 1. The Orders Estimation in Each Class. 

Class Average Standard 
Deviation 

Order 
Estimation 

Avg Pod 
Distribution/ SKU 

Order Estimation/ 
SKU/ Pod 

Class A 43.06 6.19 49 6 8 

Class B 7.22 2.57 10 2 5 

Class C 1.21 1.04 2 1 2 

This order estimation is used in the scenario of replenishment policy. The Stockout 

Probability of pod-j, (��) considers the order estimation in each pod. This policy uses 

the index of pod stockout level �� = �∑ 1 − ��� ���⁄
��
� � ��
 , � ∈ , where ���  is the 

estimation order of SKU-i in Pod-j. After the stockout level for each SKU already 

being calculated. Then add the stockout probability of all SKUs to get the pod 

stockout level (��). This showed that the bigger the stockout probability, the more 

likely to get replenished. Then, the replenishment trigger of the pod inventory level 

�� = 1 if �� > ��, otherwise �� = 0. 

d) Warehouse Inventory – SKU in Pod. This policy is conducted by checking the 

SKU inventory level in the warehouse and the total SKU in one pod that needs to 

get replenished. First, calculate all SKU-i inventory levels (��) in the warehouse 

�� =  �� ��⁄ , � ∀ �, where ��  is quantity of SKU-I and ��  is maximum quantity of 

SKU-i. After calculating the index of SKU inventory in the warehouse, it is labeled 

as an SKU that needs to be replenished (��). The �� = 1 if �� < ��, otherwise 

�� = 0. If �� = 1 the SKU is labeled as the SKU that needs to be replenished. 

Otherwise, it didn’t label to be replenished. Then, calculate the index of the pod-j 
based on the SKU level (��) that needs to replenish using �� =  ∑ ���

��
� ��
  , � ∈ , 

where ���  is the index of SKU-i in pod-j. The �� = 0  if �� ≤ �� where �� is SKU 

inventory level in the pod, otherwise �� = 1. If �� = 1 the pod is labeled to get 

replenished. Otherwise, it does not get replenished. After a pod is labeled as to get 

replenished, AGV brings the pod directly to the replenishment station. In the 

replenishment station, the SKU labeled to get replenished will be replenished to the 

maximum quantity of the SKU. The total service time of the replenishments depends 

on the total SKUs that need replenishment. 

2.3. Parameter and Performance Analysis 

Table 2 lists the assumptions used for all parameters used in the simulation. This study 

runs the simulation on NetLogo and Python. This study analyzes the proposed scenarios’ 

performance based on pod utilization and inventory analysis. The pod utilization (���) 

is defined as the number of items picked in each visit to a picking station. It is defined as 

��� = �� ��⁄ , where ��  is the total number of items picked in period ! and ��  is the 

frequency of pods visiting the picking station during the period !. The inventory analysis 

is defined as ��� = "� ��⁄ , where "�  is the total replenishment in period-!, and �� is the 

pick unit in period-!. It indicates the capability of the replenishment policy. The scenario 

shows an unstable system if the ratio is lower than 1. Other than that, the minimum 

inventory level can also be called the average total inventory. 
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Table 2. Simulation Parameters 

Parameter Value 
Run Length 8 Hours 

Replication 5 Replication 

Inventory area 550 Location 

Inventory capacity 467 Pods 

Empty Storage Area 83 Location 

Pod Batch 2 x 5 Blocks 

Aisles 12 Vertical; 4 Horizontal Aisles 

Stations 5 Picking; 2 replenishment Stations 

Initial Order 100 Orders 

Orders Proportion A = 60%; B = 30%; C = 10% Orders 

Order Arrival Time Mean =1.6 Exp. Dist 

Order Arrive 1 - 2 Orders 

Pod’s Capacity 100 Units 

Number of SKUs 
5000: 10% Class A, 30% Class B, 

60% Class C 
SKUs 

Queuing 5 AGVs 

Picking-Time (per picked unit) Alpha = 12; Beta = 1.5 Gamma. Dist 

Queuing Replenishment 5 AGVs 

Replenishment-Time Alpha = 19; Beta = 0.8 Gamma. Dist 

Robot speed 1 m/s 

Time to lift and store pod 1 Seconds 

Number of AGVs 25 AGVs 

3. Results and Discussion 

Table 3 summarizes simulation results for the emptiest policy. The Random assignment 

with 60% Pod Inventory Level as the baseline has 92.80% of throughput efficiency. The 

result shows that the mixed class one pod has the highest throughput efficiency.  
Table 3. Performance of The Emptiest. 

SKU to Pod 
Scenario 

Throughput 
Efficiency 

Rep/ 
Pick 
Ratio 

Average 
pick visit 

Average 
Pick 

units/visit 

Average 
inventory 

(%) 
Random 94.91% 0.32 808.38 1.23 56.35 

One Class One Pod 95.59% 0.38 807.75 1.24 55.80 

Mixed Class One Pod 96.36% 0.27 805.65 1.26 55.10 

Table 3 also shows that the mixed class one pod has the lowest average pick visit. It 

indicates that the Mixed Class One Pod can pick more units on each visit. The average 

inventory of the warehouse shows that all scenarios have an average inventory lower 

than 59%. This condition showed that replenishment rarely happens. It is because the 

emptiest pod has not been picked at the picking station. The average replenishment visit 

for this policy is only 3.5 replenishment/ hour. Other than the unstable system, the 

performance of this policy is also worse than the baseline. The best result of this policy 

is compared with the baseline, which increases 125.29% of pick visits and reduces 

54.51% of pick units/visit. 

The simulation is conducted based on all scenarios of SKU to Pod assignment and 

replenishment policy with the Pod Inventory Level policy. There are Random, One Class 

One Pod, and Mixed Class One Pod in SKU to Pod assignments. These SKU to Pod 

assignments got combined with the Pod Inventory Level with different replenishment 

levels (40%, 60%, and 80%). The result of the throughput efficiency of the Pod Inventory 

Level policy combined with all SKU to Pod scenarios is shown in Table 4. The Random 
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assignment with 60% Pod Inventory Level has 92.80% of throughput efficiency. The 

Mixed Class One Pod for 40% and 80% inventory levels show instability because the 

replenish/pick ratio is lower than one. The best throughput efficiency is the Mixed Class 

One Pod, with a 60% inventory level. The best scenario with the lowest scenario in each 

inventory level is the Mixed Class One Pod. Furthermore, the result shows that the Mixed 

Class One Pod can have more units being picked on each visit. It shows that lower 

inventory levels can reduce pod utilization. In 40% inventory level for One Class, One 

Pod, and Random has lower pick units/ visit than 1.6 units. The inventory condition of 

the warehouse causes this reduction. Furthermore, the result indicates that the inventory 

policy needs to be maintained above 59% to have a stable warehouse. 

Table 5 shows the simulation results of the stockout probability policy. The Random 

assignment with 60% Pod Inventory Level as the baseline has 92.80% of throughput 

efficiency. The result shows that many scenarios have lower throughput efficiency 

results than the baseline. It indicates that the lower ratio can increase the throughput. 

Assigning SKU with the same class in one pod (One Class One Pod) has the best result 

compared with other SKUs to Pod assignments in each inventory level. More popular 

SKUs assigned in the same pod can increase the stockout probability. Higher stockout 

probability triggered replenishment more frequently. This result is also verified by the 

pod utilization. The pod utilization rate shows that One Class One Pod, with an 80% 

inventory level, has the best average pick units/visits with 2.94 units/visit.  

Table 4. Performance of The Pod Inventory Level. 

SKU to Pod 
Scenario 

Inventory 
Level 
(%) 

Throughput 
Efficiency 

(%) 

Rep/ 
Pick 
Ratio 

Average 
pick 
visit 

Average 
pick 

unit/visit 

Average 
Inventory 

(%) 
Mixed Class One Pod 40 93.00 0.82 589.03 1.79 56.36 

One Class One Pod 40 93.73 1.27 619.98 1.59 59.49 

Random 40 95.83 1.19 667.68 0.3 59.85 

Mixed Class One Pod 60 92.81 1.02 342.98 2.85 59 

One Class One Pod 60 91.71 1.35 357.6 2.77 61.07 

Random-Baseline 60 92.80 1.48 373.53 2.65 62.28 

Mixed Class One Pod 80 92.50 0.99 346.18 2.84 58.83 

One Class One Pod 80 91.35 1.01 355.85 2.75 59.34 

Random 80 91.71 1.5 366.45 2.67 62.22 

Table 5. Performance of The Stockout Probability 

SKU to Pod 
Scenario 

Inventory 
Level 
(%) 

Throughput 
Efficiency 

(%) 

Rep/ 
Pick 
Ratio 

Average 
pick 
visit 

Average 
Pick Unit/ 

Visit 

Average 
Inventory 

(%) 
Mix Class One Pod 40 92.48 0.97 354.90 2.80 58.89 

One Class One Pod 40 91.87 1.22 340.20 2.88 60.46 

Random 40 92.27 1.35 348.05 2.88 62.06 

Mix Class One Pod 60 92.39 0.96 351.95 2.83 58.66 

One Class One Pod 60 92.15 1.29 356.27 2.76 60.49 

Random 60 92.37 1.50 362.02 2.72 62.23 

Mix Class One Pod 80 92.14 0.94 354.85 2.79 58.69 

One Class One Pod 80 91.00 1.47 330.10 2.94 61.73 

Random 80 96.09 0.00 832.42 1.20 55.26 

For warehouse inventory - SKU in Pod performance scenario, there are 27 scenarios 

with different inventory levels and pod levels. From all scenarios, only ten of them have 

stable systems shown by the rep/pic ratio, which is greater than 1.00 (see Table 6). The 

results also show that in terms of throughput efficiency, pick visit, and pick unit/visit, 

the proposed scenarios are better than the baseline (random scenario). The stockout 

throughput efficiency is reduced to 1.80%, the pick visit is reduced to 11.63%, and the 
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pick unit/ visit increases to 10.94% from the baseline. The best result is Mixed Class One 

Pod (60%/60%) with Warehouse Inventory SKU in Pod. Although there is only a slight 

increase of throughput efficiency, the pick visit is reduced to 14.75% pick visit, and the 

pick unit/ visit increases to 17.83% pick unit/ visits. 

Table 6. Performance of The Stockout Probability 

SKU to Pod Scenario Inventory 
level Pod Level Throughput 

Efficiency Rep/ Pick Ratio 

One Class One Pod 60 

40 91.85% 1.04 

60 93.36% 1.07 

80 92.75% 1.05 

Mixed Class One Pod 60 

40 90.18% 1.03 

60 91.08% 1.24 

80 90.51% 1.21 

Random 

60 40 93.68% 1.47 

80 
40 93.14% 1.2 

60 92.22% 1.2 

4. Conclusion 

The RMFS needs to have a proper design to increase the efficiency of the order-picking 

process. The implementation of the scenarios of SKU to Pod assignment and 

replenishment policy influenced the performance of the system. SKU to pod has the role 

of improving the pod utilization by increasing pick unit in each visit. Pod with more SKU 

types is likely to fulfill more orders. The replenishment policy has the role of maintaining 

the inventory of the warehouse and keeping the pod at a high service level.  

This study proposes three scenarios in the SKU to Pod assignments: Random, 

divided as One Class One Pod, and Mixed Class One Pod, and four replenishment 

policies: the Emptiest, Pod Inventory Level, Stockout Probability, and Warehouse 

Inventory – SKU in Pod. The baseline of this study is Random-Pod Inventory Level with 

a 60% inventory level. This baseline is compared with other combined scenarios to find 

the best result. The best result is Mixed Class One Pod combined with the Warehouse 

Inventory SKU in Pod. There is a slight increase of 0.56% in throughput efficiency. Other 

than that, the pod utilization increased by 17.83% compared to the baseline. These results 

can be achieved by maintaining an average of 59.26% warehouse inventory.  

Further study should try to implement a more flexible replenishment policy of SKU 

to the pod. Replenishing the pod with a new set of SKUs should be considered. Replacing 

less popular SKUs with more popular SKUs might increase pod utilization.  
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