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Abstract. Adaptive automation, the scheme to allocate power of control between 
the automation system and the human operator dynamically and flexibly depending 
on situations, has been studied in multiple disciplines recently. It is expected to 
alleviate the Out-Of-The-Loop (OOTL) phenomenon of human operators through 
occasional handover. However, the effectiveness and impacts of adaptive 
automation on human pilots in aviation scenarios are still unrevealed. To partially 
fill this gap, this study will investigate how the preset handover affects pilots’ 
emergency-handling performance and psychophysiological alteration. The 
emergency-handling performance will be measured by the aircraft control 
behaviours recorded by the flight simulator, and the psychophysiological alteration 
will be assessed based on eye movements recorded by the eye-tracker. Twenty-six 
student pilots were recruited to participate in a comparative experiment consisting 
of two simulation flight tasks in a flight simulator. Compared with the control flight 
which performs autopilot during the whole cruising phase, the adaptive automation 
mode requires the pilots to conduct twice manual piloting at preset time points. 
Finally, an identical engine shutdown is triggered in each flight to assess the pilots’ 
emergency-handling performance. As a result, the aircraft control behaviours data 
of the adaptive automation mode demonstrates a significant superiority and the eye 
movements data also presents several indicative divergences. This study reveals the 
natural human responses to the handover between autopilots and human pilots. The 
results can serve as a foundation for further developing the autopilot into the 
adaptive automation paradigm. 
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Introduction 

The development of sophisticated autopilot systems and flight management functions in 
aviation has mitigated the risk of human errors by taking over pilots' manual flight 
operations [1]. Using autopilots and flight management systems (FMS), many flight 
operations are automated, such as maintaining aircraft control, navigation, information 
presentation and fuel management, to reduce pilot workload and reduce the possibility 
of human-caused air accidents [2]. Nevertheless, pilots may be gradually disconnected 
from the loop of control as a result of advanced automation. Studies have found that 
pilots exposed to high levels of automation may lose focus, vigilance, and situational 
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awareness over time, resulting in increased fatigue and lower skill levels [3]–[5]. These 
detrimental impacts on human performance brought on by the absence of human 
operation are described as Out-Of-The-Loop (OOTL) phenomenon.  

The OOTL phenomenon appears in numerous fields where automated technologies 
take over duties that were originally performed by human operators [6]. Though the 
operators’ overall operation skill level is maintained or even enhanced through years of 
routine training and experience accumulation, the OOTL impairs their performance in 
the course of a single operation. Adaptive automation (AA) is hence proposed to mitigate 
such issues by adopting transdisciplinary engineering knowledge (i.e., control theory, 
ergonomics, industrial knowledge, etc.) [7]. AA systems adjust their functions or 
operations automatically according to their monitoring of the users’ needs and mental 
state [8], [9]. Although many studies suggested that AA has significant effects on the 
performance of compensatory tracking tasks or air traffic controlling tasks [10], [11], 
few studies have investigated the impact of AA on the pilots’ flight control performance. 
Additionally, though several existing studies have verified AA’s effect on the subjects’ 
performance measured by obstructive methods such as Electroencephalography (EEG) 
and Functional near-infrared spectroscopy (fNIRS) [3], [12], whether the eye movement 
will also be impacted by AA remain to be discovered. Therefore, we examine the effect 
of AA on pilots’ both flight control performance and visual attention distribution.  

Compared with EEG and fNIRS, eye-tracking is an effective tool to monitor mental 
state and assess the pilots behaviours since it can capture pilots’ visual attention 
distribution in a nonobstructive and real-time way [13]. Therefore, this study leverages 
eye movement data with the aircraft controlling data provided by flight simulators to 
examine the effect of AA on pilots’ flight operation performance from both the 
operational perspective and the psychological perspective. An experiment is conducted 
where the subjects are required to conduct two comparative flying tasks in the flight 
simulator wearing an eye tracker. Based on the recorded data and analysis result, two 
hypotheses are tested: (1) the adaptive automation mode has a positive effect on pilots' 
flight control performance; (2) the adaptive automation mode has a significant impact on 
the pilots’ visual attention distribution  

The study reveals the effects of adaptive automation on pilots' flight control 
performance from both the operational perspective and the psychological perspective. 
The major contribution of this study is providing a groundwork to develop practical 
adaptive automation systems for FMS utilizing eye-tracking technologies thereby 
mitigating the OOTL phenomenon experienced by pilots. Furthermore, the findings and 
conclusions can also be extended to other human-automation collaboration scenarios, 
especially transportation areas such as the autonomous driving [6], [14]. 

1. Related work 

An adaptive automation (AA) system allows the level or mode of automation or the 
number of automated systems to be modified in real-time [9]. As a result of AA, the 
human operator and/or machine can change the level of automation by shifting control 
of specific tasks according to predefined conditions [15]. The AA system is expected to 
realize a human-automation symbiosis to optimally leverage human skills while also 
achieving production efficiencies in Industry 4.0 [16]. For example, Bortolini et al. [17] 
presented an assembly system to reconfigure in real-time, allowing a reduction of the 
movements during the picking and assembly phases in the manufacturing industry. 
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Early research studies have examined the effectiveness of AA on system monitoring, 
tracking, and resource management tasks of the pilot [18], [19]. Prinzel III et al. [20] 
reported significantly superior performance and lower workload associating AA with 
psychophysiological self-regulation training in several flight control tasks. A more recent 
study implemented the concept of AA in the domain of military aviation and concluded 
a beneficial influence in helicopter flying tasks [21]. Besides, Flumeri et al. developed a 
system called “Vigilance and Attention Controller” based on EEG and eye-tracking (ET) 
to evaluate the vigilance level of Air Traffic Controllers (ATCs) and adaptively adjust 
the automation tasks [22], which have optimized the ATCs working performance. 

To study the pilots' flight control performance, researchers have adopted various 
measurements, such as pitch angle, heading, and airspeed [23]. In the meantime, eye-
tracking has been adopted in recent studies as an assistive method to assess pilots’ 
operation performance by analysing their gaze patterns under different conditions [24].  

Despite AA has been verified to be beneficial in various aviation tasks, the effect of 
AA on pilots’ aircraft control performance still remains to be undiscovered. Furthermore, 
though the pilots' gaze patterns have been studied in several different conditions to assess 
the pilots’ performance, the effect of AA on visual attention distribution remains 
unknown. Therefore, this current study examines the effect of AA on pilots’ flight control 
performance and visual attention distribution. 

2. Methods 

2.1. Participants 

Twenty-six students (22-32 years old, 17 males, 9 females), with normal or corrected-to-
normal vision, were recruited from The Hong Kong Polytechnic University (PolyU), The 
Chinese University of Hong Kong, and the City University of Hong Kong to conduct the 
experiment. An introduction and practice session is arranged before the formal 
experiment to make sure all the participants are capable of completing the normal flying 
process and dealing with the frequent issues that might happen during the simulated 
flying. The study is ethically approved by the PolyU Institutional Review Board 
(Reference number: HSEARS20211117002) and Pre-experiment informed consent is 
obtained from all subjects in written form.  

 

Figure 1. Experiment setting. 
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2.2. Experiment setting 

The experiment platform consists of a Cessna 172 simulator and a Tobii Pro Glasses 3 
to capture the subjects’ eye movements. Microsoft Flight Simulator is installed in the 
Cessna 172 simulator to provide the simulated flying environment. Besides, a desktop 
computer with a 27-inch monitor (1920*1080 pixels) is utilized for conducting 
monitoring the flight simulation and recording eye-tracking data Fig.1 shows the 
experiment settings. 

2.3. Experiment procedure 

There are two flying modes in the experiment, named auto-pilot (AP) mode and semi-
auto-pilot (SAP) mode. Both the AP and SAP mode load the same record and start with 
ongoing cruising under the auto-pilot function, and an engine-shutdown incident is 
activated after 42 minutes of flight to examine the subjects’ aircraft control performance. 
Under the AP mode, the auto-piloting function is turned on for the whole cruising phase 
until the pre-set incident happens. The SAP mode is defined following the concept of 
AA, which is adaptively handover the control back to the human operator to keep the 
operator in the loop. Under SAP mode, the auto-piloting function is turned off twice 
during the flight and requires the subjects to take over and manipulate the aircraft 
manually for two minutes. After each manual flight, the flight switches back to auto-
piloting again, until the predesigned incident happens. The two take-over requests of 
control in SAP mode are preset at 10 minutes and 30 minutes from the beginning of the 
flight. Before the experiment, the subjects are not aware of when the engine-shutdown 
incident will happen, as well as whether and when there are take-over requests. The 
performance of the sudden incident handling is recorded and evaluated to assess whether 
the periodical handover could mitigate the OOTL effect and improve incident handling 
capability.  

The experiment is a one-way within-subject design as shown in Table 1. Route 2 is 
the inverse of route 1 to control the irrelevant variables such as weather and flying 
distance, and reduces the learning effect of subjects getting familiar with the route in the 
first run. The subjects will switch to another route and another flying mode for their 
second runs. This increased the confidence level of the result by preventing the 
possibility that the subjects are more familiar with one of the routes or they enhanced 
their flying skill in the former mode. 

Table 1. Route assignment to experiment groups. 

Group  Route 1: Hong Kong to Guangzhou Route 2: Guangzhou to Hong Kong 

Group A (size: 13) AP mode SAP mode 

Group B (size: 13) SAP mode AP mode 

The whole experiment lasts for around 2 hours with two simulation flights as shown 
in Fig. 2. The flow starts with a brief session to introduce the experiment procedure to 
the subjects, get the signed consent form, and calibrate the eye tracker. After the brief 
session, the participants were given time for practicing the simulator until both the 
subjects and the researchers are satisfied with the familiarity. For group A, the simulation 
flight task of route 1 starts upon the completion of the practice conducted with AP mode. 
After completing the flight of route 1, the participants have a 10-minute break to reduce 
the impact of fatigue on the second simulation flight. Next, the second simulation flight 
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is conducted in SAP mode with twice scheduled 2-minute handovers from auto-piloting 
mode to manual manipulation during the process. Group B takes the adverse sequence 
of group A during the experiment as shown in Fig. 2.  

 
 

Figure 2. Experiment process. 

2.4. Flight control performance 

The flight control performance is defined based on the pitch and row angle of the aircraft 
in the landing phase as shown in Fig.3. After the engine shutdown, the aircraft loses 
power and the altitude gradually decreases. The task of the subjects is to manipulate the 
joysticks of the simulator to keep the pitch and row angle as small as possible to keep 
the aircraft stable in this landing phase.  

 
Figure 3. Flight with SAP mode. 

Two pairs of indexes are extracted and computed to assess the subjects’ flight 
control performance. The Average Pitch (Ap) and Average Row (Ar) are defined in 
Equations 1 and 2 to evaluate the overall pitch and row level of the aircraft in the landing 
phase (ts: timepoint when the engine shuts down, landing starts; tl: timepoint when 
landed). The smaller the Ap and Ar are, the more flat the aircraft is during the landing. 
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∆ =  � − ���  

��: Pitch value at sampling point i, −180< �� <180 
��: Row value at sampling point i, −180< r� <180 
The Fluctuation Pitch (Fp) and Fluctuation Row (Fr) are defined in Equations 3 and 

4 to evaluate the variance of pitch and row angles in the landing phase. With smaller Fp 
and Fr, the aircraft is more stable during the landing phase with fewer extreme flips. 
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2.5. Visual attention distribution 

To assess the subjects’ visual attention distribution, six Areas of Interest (AoIs) were 
defined as shown in Fig.4. In particular, four indicators on the panel that provide digital 
information about the current flight state are selected:  attitude indicator (ATT); 
altimeter (ALT);  airspeed indicator (SPD);  vertical speed indicator (VSPD). The 
screen view, which presents the simulated flying scenario and provides the subjects with 
a direct sense of the aircraft's posture relative to the horizon, is also defined as two AoIs: 

 the nose of the aircraft on the screen (Nose);  the outside window(OTW), which is 
the remaining part on the screens. 

 
Figure 4. AOI separation on the conceptual cockpit of Cessna 172 simulator.  

The total glance count and average glance duration of each AoI are measured to 
exhibit the subjects’ visual attention distribution. A single glance covers from the 1st 
saccade into the AoI to the last saccade in (leaving) the AoI. (Saccade is ballistic 
movements of the eyes that abruptly change the point of eye fixations.) The total glance 
count to an AoI indicates the semantic importance [25] including the effort to refresh and 
confirm the information [26], [27]. Despite the influence of AoI size, the average glance 
duration suggests the level of interest towards the AoI [28]. 
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3. Results and discussions 

3.1. Flight control performance 

All the twenty-six subjects completed the two flight tasks and 52 flight performance data 
were collected (26 AP, 26 SAP). The results shown in Fig. 5 and Fig. 6 reveal a positive 
effect of the SAP mode on the flight control performance of the student pilots.  

 
Figure 5. Average Pitch (Ap) and Average Row 

(Ar). 

 
Figure 6. Fluctuation Pitch (Fp) and Fluctuation 

Row (Fr). 

More specifically, a paired t-test is conducted on the four indicators introduced 
above in order to understand the influence of flying mode on flight control performance. 
The t-test shows Ap under SAP mode (M = 5.79, SD = 3.26) and AP mode (M = 6.86. 
SD = 5.44) had no significant difference (t(25) = -1.32, p = 0.199). However, the Ar under 
SAP mode (M = 6.37, SD = 4.22) is significantly smaller than under AP mode (M = 9.21. 
SD = 7.63) with t(25) = -2.22, p = 0.036. It suggests the student pilots could keep the 
aircraft at a more stable attitude on the row axis under the SAP flying mode. Besides, the 
Fp under SAP mode (M = 58.79, SD = 109.85) is smaller than under AP mode (M = 
115.34, SD = 207.87) with a significant difference (t(25) = -2.36, p = 0.027). Similarly, 
significant difference (t(25) = -2.16, p = 0.041) is found between the Fr under SAP mode 
(M = 126.83, SD = 250.21) and AP mode (M = 251.14, SD = 445.43). It suggests the 
student pilots kept the pitch and row angles more constant making less fluctuation during 
the landing phase in SAP mode. From the results obtained, the first hypothesis is 
supported that the adaptive automation mode has a positive effect on pilots' flight control 
performance. 

3.2. Visual attention distribution 

After filtering out 10 records from 5 subjects whose eye-tracking rates are too low (below 
85%), a total of 42 records from 21 subjects were summarized and analyzed. Table 2 and 
Table 3 show the t-test results of total glance count and average glance duration, 
respectively. It is worth to be mentioned that all the data of the cruising phase in the SAP 
mode have excluded the two manual operations, which means all the data in the cruising 
phase represents the subjects’ behaviours only under the automation control. 
Correspondingly, the data in the AP mode at the same time have also been excepted to 
guarantee the same total sampling time for the cruising phases. 
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Table 2. Total glance count and average glance duration of AoIs. 

AoI Flying 
Phase 

Total glance 
count (#) 

 Average glance 
duration (MS) Significance 

AP SAP AP SAP 

ALT 

Cruising 34.4 

(19.7) 

72.7 

(52.7) 

t = -3.56 

p < .001* 

745.3 

(462.9) 

760.1 

(341.9) 

t = -0.17 

p = .434 

Landing 6.6 

(6.5) 

4.5 

(5.0) 

t = 1.31 

p = .102 

690.2 

(537.3) 

425.0 

(258.1) 

t = 2.47 

p = .011* 

ATT 

Cruising 60.7 

(33.9) 

139.3 

(81.2) 

t = -4.96 

p < .001* 

685.1 

(377.0) 

820.3 

(380.2) 

t = -1.74 

p = .048* 

Landing 10.8 

(8.1) 

12.5 

(14.4) 

t = -0.50 

p = .313 

741.0 

(802.2) 

741.7 

(733,4) 

t = -0.01 

p = .498 

SPD 

Cruising 33.9 

(18.3) 

39.7 

(21.9) 

t = -1.19 

p = .124 

798.6 

(415.0) 

702.5 

(352.4) 

t = 2.01 

p = .029* 

Landing 2.3 

(3.3) 

1.3 

(1.9) 

t = 1.94 

p = .034* 

292.7 

(300.0) 

175.2 

(224.2) 

t = 1.57 

p = .066 

VSP
D 

Cruising 10.8 

(11.4) 

31.3 

(44.0) 

t = -2.28 

p = .017* 

625.7 

(516.5) 

661.7 

(419.0) 

t = -0.39 

p = .351 

Landing 3.8 

(6.7) 

2.6 

(4.7) 

t = 1.16 

p = .131 

232.4 

(346.9) 

231.5 

(342.6) 

t = 0.01 

p = .50 

Nose 

Cruising 649.3 

(350.2) 

630.9 

(300.1) 

t = 0.31 

p = .381 

860.7 

(452.8) 

980.8 

(552.3) 

t = -1.13 

p = .136 

Landing 55.7 

(32.0) 

53.1 

(35.1) 

t = 0.29 

p = .389 

1485.7 

(911.5) 

1619.6 

(1802.1) 

t = -0.38 

p = .354 

OT
W 

Cruising 1020.3 

(517.0) 

859.8 

(392.0) 

t = 2.90 

p = .004 

1393.2 

(814.7) 

1510.1 

(872.6) 

t = -1.06 

p = .151 

Landing 52.6 

(26.2) 

53.4 

(38.5) 

t = -0.09 

p = .464 

1221.2 

(808.9) 

1369.9 

(892.8) 

t = -0.765 

p = .226 

From Table 2, no significant difference is found in the landing phase except the 
total glance count of SPD and the average glance duration of ALT. However, the total 
glance counts of both AP and SAP modes during the landing phase are too few to make 
a confident enough conclusion as shown in Table 2. Therefore, a conclusion can be made 
that the visual attention distribution during the landing phase is similar under the two 
modes. However, many significant differences can be found in the cruising phase, 
including the glance count of ATT, VSPD, and OTW, as well as the average glance 
duration of ATT and SPD. More specifically, the subjects reduced their glance to the 
outside window and paid more glances and longer glance duration to the attitude 
indicator under the SAP mode. Possibly this is due to the reduced glances to the outside 
window (possibly in a daze), which are lower in SAP mode than in AP mode. These 
results support the second hypothesis that the adaptive automation mode has a significant 
impact on the pilots’ visual attention distribution.  
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4. Conclusions 

In this study, we adopted the theory of psychology, aviation industry knowledge, and 
analytical methods from engineering to investigate the impact of AA on aircraft control. 
An SAP flying mode including preset automation-manual handovers is introduced 
following the concept of AA to keep the pilots in the loop during auto-pilot. The student 
pilots’ flight control performance and visual attention distribution are recorded by the 
simulator and eye-tracker to examine the effect of SAP mode compared to the AP mode 
which applies auto-pilot for the whole cruising phase. The pitch and row angles in the 
landing phase are measured to assess the subjects’ flight control performance. The total 
glance count and average glance duration of six crucial AoIs related to flight control are 
computed to reflect the subjects’ visual attention distribution. The results indicated that 
AA mode influences visual attention distribution during the cruising phase of the flight 
and improves flight control performance in the after-incident landing phase. 

One limitation of this research is the automation-manual handover time is preset 
rather than accurately activated when the subject is out of the loop, as there still lacks a 
precise method to define when and how much a human operator is experiencing an 
OOTL effect [29]. Future studies will be conducted on revealing the relationship between 
pilots’ visual attention distributions and flight control performance under different flying 
modes. Furthermore, an AA method based on eye-tracking technologies is expected to 
be developed and facilitate the implementation of AA systems in the cockpits. 
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