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Abstract. This paper presents machine learning motor vibration with service 
estimation date. AI and machine learning algorithms are used to evaluate electric 
motor vibration patterns and predict maintenance and repair needs. Efficiency, 
downtime, and maintenance and repair schedule optimisation are project goals. 
Over time, machine learning algorithms analyse electric motor data to identify 
vibration patterns. This will predict maintenance and repair needs. KNN, CatBoost, 
and Neural Network were studied. Machine learning algorithms predicted 
maintenance and repair needs with over 90% accuracy. Algorithms also calculated 
the service estimation date, improving maintenance and repair scheduling. It 
improved maintenance and repair programmes, reduced downtime, and increased 
reliability. An ESP8266 and a vibration sensor to record and send electric motor 
data to ThingsSpeak, an IoT website that analyses it. Machine learning algorithms 
is then used to classify the motor vibration to determine the service estimation date. 
This project taught me how to maintain and repair electric motors using machine 
learning and AI algorithms. 
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1. Introduction 

Industry 4.0 and sensor technology advancements have made it possible for smart 

factories to increase output and quality. As a method to reduce downtime and improve 

operations, predictive maintenance has gained popularity. Edge computing and the 

Internet of Things (IoT) have become important technologies for data processing and 

energy efficiency. Early fault detection has improved with the development of 

monitoring systems, including wireless sensor networks (WSNs). With improvements 

in data accessibility and deep learning algorithms enabling real-time motor service life 

prediction, machine learning has become indispensable in the analysis of motor 
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vibration. Predictive maintenance's major goal is to identify equipment and component 

failures before they occur, allowing manufacturing companies to plan maintenance in 

advance. The potential for data-driven problem diagnostic techniques has increased as a 

result of smart factories producing enormous volumes of data that are beyond the 

ability of human technicians to inspect [1-3]. 

Condition monitoring systems can benefit greatly from the problem detection and 

motor behaviour prediction capabilities of the potent gradient boosting algorithm 

CatBoost. While deep learning, a branch of machine learning that uses multiple-layer 

neural networks for fault detection, is frequently employed, CatBoost has certain 

particular advantages for handling gathered data and carrying out fault diagnosis tasks. 

[4,5] Because CatBoost can handle both category and numerical information, it is 

particularly well suited for analysing the variety of sensor data gathered by condition 

monitoring systems. In real-world situations where data quality may fluctuate, its 

robustness in managing missing values and outliers is advantageous. Additionally, 

CatBoost demonstrates competence in handling unbalanced datasets, which are 

frequently present in fault diagnosis tasks [6].  

2. Literature Review 

In manufacturing, maintenance is a crucial element that raises equipment quality and 

reliability while lowering equipment downtime. Reactive maintenance, preventive 

maintenance, and predictive maintenance are the three types of maintenance 

approaches that are used [1, 7, 8]. Reactive Maintenance, sometimes referred to as Run 

to Failure (R2F), is a straightforward but expensive maintenance technique. It entails 

fixing the apparatus after a fault or failure, which can result in additional harm to other 

parts. Preventative Maintenance (PvM) is founded on regularly scheduled maintenance. 

PvM, on the other hand, does not take into account the real condition or health of the 

equipment, which can lead to unneeded expenses and corrective actions such the early 

replacement of healthy components, which causes unwanted downtime [9-10]. 

2.1. Sensors 

No matter what kind of sensor is employed, the stiffer the mounting, the wider the 

frequency range, and the more accurate the reading. Vibration sensors are often 

permanently fixed at a particular location in the machine to allow for continuous or 

online monitoring of the machine's status. The sensor is fastened to the machine by 

being fitted into a stud [11-13]. In comparison to other mounting techniques, this one 

not only has the largest frequency response but is also extremely trustworthy and safe.  

Accelerometers are trustworthy and durable sensors used to measure vibration or 

acceleration. They have a wide frequency range, a lightweight design, and high 

sensitivity [17]. They can, however, be vulnerable to interference from the environment 

and need electronic integration for velocity and displacement data. Table 1 shows the 

advantages and disadvantages in comparison with what each respected author chose. 
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Table 1. Comparison of sensors. 

Sensors Advantages Disadvantages 

Piezoelectric 
accelerometer[14] 

Lightweight, high sensitivity, good 
frequency, dynamic range 

Needs electronic integration to acquire 
velocity and displacement data, 
vulnerable to interference from the 
external environment 

MEMS 
accelerometer[15,16] 

Cheaper than piezoelectric sensor, 
requires low processing power, high 
sensitivity 

Suffers from poor signal-to-noise ratio 

Velocity 
transducer[3] 

Can operate without any external 
device, 
generally costs less than other sensors 

Limited operational frequency range, 
most velocity transducers are prone 
to reliability problems at operational 
frequency of more than 121°C 

Displacement 
sensor[18] 

Good sensitivity, simple 
postprocessing 
circuit with negligible maintenance 

Succeptible to shock, difficult to install 

2.2. Machine Learning Methodology Comparison 

The problem being solved and the type of data will determine which algorithm is used. 

A handful of the several machine learning algorithms employed. CatBoost, developed 

by Prokhorenkova et al. in 2017, this extremely successful machine learning technique 

has become quite popular in the field of motor or machinery predictive maintenance     

[19-20]. CatBoostClassifier's innovative "Ordered Boosting" technique enables it to 

handle categorical variables efficiently. The data preparation process is made simpler 

by this feature. Random Forest employs bagging to reduce overfitting and tree-type 

classifiers. NN is composed of several nodes, which are artificial processing neurons 

with rich connections, coupled to one another in layers to form a network [21]. The 

intricacy of the network affects training time, which directly impacts the accuracy of 

the findings. We can see a summarized comparison in table 2. 

Table 2. Comparison of ML Methodologies. 

Author Methodologies Findings 

[20] Proposed the fuzzy logic method to 
diagnose the operation of 
rotating machines 

The proposed method can easily diagnose 
the operational status 
of the rotating system 

[22] Combined the GA, SVM, and EEMD 
methods to diagnose gear 
faults 

Incorporating the GA to select the 
parameter of SVM can 
improve the generalization ability and 
classification accuracy of 
the diagnostic system 

[21] Combined the cepstrum analysis and 
NN method to detect and 
diagnose gear fault 

NN can diagnose gear faults with high 
accuracy, provided that 
proper measured data are used 

[17] Applied the kurtosis and SVM method 
to diagnose roller 
bearing fault 

The accuracy of the proposed method is 
93.75% and can be 
applied even with a limited number of 
samples 

3. Methodology 

The development of an IoT-based monitoring system using sensors, an embedded 

system, machine learning algorithms, and data processing methods is the chapter's main 

topic.  
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3.1. Dataset Acquisition & Data Preprocessing 

In this study, a machine learning model was trained using data from an industrial motor. 

The dataset had six separate imbalance faults, misalignment faults, and normal 

operation along with unbalanced and normal data. To achieve uniform ranges and 

standardised features, preprocessing the data is essential. In order to prevent 

overvaluing higher values and keep interpretability, feature scaling is a crucial stage in 

this process. Dealing with imbalanced data is crucial since it can impair algorithm 

performance, result in false representations, and produce substandard results [22,23]. 

One method frequently used to address imbalanced datasets is down sampling. To 

obtain an even distribution, it entails lowering the samples from the dominant class.  

Around 11 models were tested for this dataset mentioned, namely: HistBoosting, 

LightGBM, Random Forest, Bagging classifier Boosting, NN, KNN, etc.  For their 

accuracy and the highest accuracy model was chosen. Cat Boost Classifier had the 

highest accuracy compared to the other models. This process of training the model is 

discussed in this section. Google Colab is the platform used to train the model and the 

programming language used is Python. 

3.2. IoT 

The free website ThingSpeak will be used for IoT monitoring. The first step is to 

register for a ThingSpeak account. The following action is to establish a channel 

specifically for motor vibration analysis. For the hardware and ThingSpeak to 

communicate with one another, getting the Channel ID and API key is essential. The 

API key functions as a secure access token, enabling authorised devices to submit data 

to the channel, while the Channel ID operates as a unique identification for the channel. 

3.3. Overall System 

TheMPU6050 accelorometer is used to collect data from the motor. Data collection and 

transmission where the nodeMCU receives data from the sensors and delivers it to the 

cloud after preprocessing. Using ThingSpeak which can handle the volume and variety 

of data generated by IoT devices. To gain insights into the behavior of the object being 

watched, the sensor data is processed and visualized. Machine learning techniques, in 

our case CatBoost and others are being used in this case to find patterns and 

abnormalities in the data.  

3.4. Algorithms Selection  

At this point in the investigation, we are mostly concerned with evaluating the accuracy 

of several machine learning models and looking at their individual ROC scores. The 

Decision Tree Classifier, Random Forest Classifier, Gaussian NB, K-Nearest 

Neighbours Classifier, and Gradient Boosting Classifier are a few of the models we 

first implemented. The confusion matrix, classification report, accuracy, and ROC 

score are used to assess their performance. We can gauge the model's ability to 

correctly predict the labels for the motor vibration patterns using the accuracy metric. 

The model's capacity to distinguish between several classes is also measured by the 

ROC score, which also accounts for the true positive rate and false positive rate. Better 
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overall performance in differentiating between various vibration patterns is indicated 

by a higher ROC score as shown in figure 1. 

It's crucial to remember that choosing the optimal model might not be just based 

on accuracy and ROC score. It is also important to consider factors like model 

complexity, computing needs, and interpretability. 

 
 

Figure 1. ROC scores comparison. Figure 2. DecisionTreeClassifier Model. 

3.5. Different Models and Accuracy 

The "DecisionTreeClassifier" class is used in this instance as shown in the figure 2 to 

construct the decision tree classifier. This model's accuracy, measured as the proportion 

of cases accurately predicted, is 66.625%. The model's capacity to distinguish between 

several classes is measured by the ROC score of 0.7549612777506117, where a higher 

value denotes better performance. 

In this instance, the random forest model outperforms the decision tree classifier 

with an accuracy of 71.45% and a ROC score of 0.882. KNN model with a k value of 2 

is constructed using the "KNeighborsClassifier" class. The KNN model's accuracy, 

measured as a percentage of instances accurately predicted, is 66.61%. The model 

performs rather well in class separation, according to the ROC score of 0.817. We 

initialise the CatBoost classifier as M8 and train it on the training data (X_train and 

y_train). The labels for the test data (X_test) are predicted using the trained model, and 

the confusion matrix, classification report, accuracy, and ROC score are then computed. 

The CatBoost classifier excels at correctly categorising the motor vibration patterns, as 

evidenced by the attained accuracy of 89.5% and the ROC score of 0.89. 

4. Results and Discussion 

In this section, we present the results and analysis of the service estimation date 

prediction models for the induction motor fault detection system. We evaluated 

multiple classification algorithms, including HistBoosting, KNN, NN, and CatBoost 

Classifier, on various load conditions, namely No Load, 5g Load, 10g Load, and 15g 

Load 

As seen in figure 3, the "No Load" condition, the motor operates without any 

external load. During this condition, the vibration pattern analysis provides valuable 

insights into the motor's health and performance. Based on the analysis of the vibration 

data, an estimated service date of 9 months is recommended. This means that after 9 

months of operation under no load, it is advised to conduct maintenance checks and 

inspections on the motor. 
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The 9-month estimated service date takes into account the specific vibration 

patterns exhibited by the motor under no load condition. It indicates that over time, 

certain wear and tear may occur, internal components may experience degradation, and 

potential faults or issues may arise. It is essential to emphasize that the estimated 

service date of 9 months is based on the analysis performed using machine learning 

models trained on the vibration data collected during the "No Load" condition. 

However, it is important to consider other factors such as the motor's age, 

environmental conditions, and historical performance data when determining the actual 

service date. Regular monitoring, analysis, and refinement of the predictive models will 

further enhance the accuracy of the service estimation for motors operating under the 

no load condition. 

  
Figure 3. No Load Vibration Pattern. Figure 4. 5g Load Vibration Pattern. 

As seen in figure 4, the "5g Load" condition, the motor operates with a load of 5g, 

which refers to a specific level of mechanical imbalance. This condition introduces 

additional stress and vibration to the motor. Based on the analysis of the vibration data 

collected during the 5g load condition, an estimated service date of 6 months is 

recommended. The 6-month estimated service date takes into account the unique 

vibration patterns exhibited by the motor under the 5g load condition. The increased 

load and imbalance put additional strain on the motor's components, potentially 

accelerating wear and tear. It is important to note that the estimated service date of 6 

months is derived from the analysis performed using machine learning models trained 

on vibration data collected during the 5g load condition. However, it is crucial to 

consider other factors such as the motor's age, operating conditions, and historical 

performance data to determine the actual service date accurately. Regular monitoring 

and refinement of the predictive models will further enhance the accuracy of the 

service estimation for motors operating under the 5g load condition. 

5. Conclusion 

The machine learning-based motor vibration monitoring system with a service 

estimation date, in conclusion, has promise, but there are also drawbacks that must be 

recognised. The calibre and representativeness of the dataset used for training and 

evaluation determine the precision and generalizability of the predictions. Performance 

might be improved by incorporating a more varied dataset with a wider variety of load 

conditions and fault scenarios. Consistent and accurate sensor readings are required 

because sensor variability, such as placement, sensitivity, and calibration, can affect the 

accuracy of vibration data collected. This study's models might behave differently 

when used with various motor systems, operating situations, or fault types, highlighting 

the need for additional validation on a variety of datasets. Despite these drawbacks, the 

technology has the potential to significantly impact society by increasing safety, 
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lowering costs, and improving equipment reliability. Additionally, it supports the SDGs 

for affordable and clean energy, business and innovation, and sustainable cities and 

communities. Future suggestions include boosting fault detection capabilities, 

incorporating real-time monitoring and IoT platforms, and enhancing general 

equipment performance through preventative maintenance techniques. 

Acknowledgement 

This research is made possible via REIG Grant by UCSI University under REIG-

FETBE-2021-042. 

References 

[1]  Bolotinha M and Researcher I. Motor Faults. 2018. 
[2]  Kumari S, Raj R and Komati R. A thing speak IoT based vibration measurement and monitoring 

system using an accelerometer sensor. Int. J. Eng. Appl. Sci. Technol. 2021; 3: 307–313. 
[3]  Mohd Ghazali MH and Rahiman W. Vibration analysis for machine monitoring and diagnosis: A 

systematic review. Shock Vib. 2021.  
[4]  V. S, K. R, P. A, and B. K. B. Condition monitoring of industrial motors using machine learning 

classifiers. SSRN Electron. J. 2021. 
[5]   Girard AJ, Reilly JJ and Quimby JE. Vibration and acoustic monitoring systems. In ASM Handbook, 

1989; vol. 17, Nondestructive Assessment and Quality Control, pp. 680–689. 
[6]  Cao J, Zhang Y, Chen H, Zhu L and Liu W. A wireless sensor network-based gearbox vibration 

monitoring system. Journal of Sensors. 2017. 
[7]  Dong W, Wang X and Wang Y. A machine learning-based wind turbine fault detection and diagnosis 

system. IEEE Access. 2018; 6: 12894–12903. 
[8]  Kim HJ, Seo JH and Kim SG. IoT-based monitoring system for indoor environment. Journal of Sensor 

and Actuator Networks. 2019; 8(2): 22.Diagnosis: A Systematic Review,” Shock Vib., vol. 2021, 2021, 
doi: 10.1155/2021/9469318. 

[9]    Selvaganapathy MP and Palanisamy V. An energy-efficient protocol for internet of things (IoT) devices. 
IEEE Access. 2019; 7: 48676-48686. 

[10] Li Y, Li W and Zhong Y. Deep learning-based anomaly detection in internet of things systems. IEEE 
Internet of Things Journal. 2020; 7(5): 4246-4255. 

[11] Kumar S, Lokesha M, Kumar K and Srinivas K. Vibration based fault diagnosis techniques for rotating 
mechanical components: review paper. IOP Conf. Ser.: Mater. Sci. Eng. 2018; 376: 012109  

[12] Sanders C. A guide to vibration analysis and associated techniques in condition monitoring. 2020. 
https://www. scribd.com/document/320879762/Vibration-Analysis-Guide. 

[13] Cheung KW, Starling MJ and McGreevy PD. A comparison of uniaxial and triaxial accelerometers for 
the assessment of physical activity in dogs. Journal of Veterinary Behavior. 2014; 9(2): 66–71. 

[14] S. Xianzhong, J. Zhuangde, L. Peng, G. Lin, and J. Xingdong. A novel PVDF based high-GN shock 
accelerometer. Proceedings of the 7th International Symposium on Measurement  Technology and 
Intelligent Instruments, Huddersfield, England, April 2005; pp. 107– 110. 

[15] Goyal D and Pabla BS. Condition based maintenance of machine tools-A review. CIRP Journal of 
Manufacturing Science and Technology. 2015; 10: 24–35. 

[16] Li H, Zhang Y and Zheng H. Gear fault detection and diagnosis under speed-up condition based on 
order cepstrum and radial basis function neural network. Journal of Mechanical Science and 
Technology. 2009; 23(10): 2780–2789. 

[17] Salami MJE, Gani A and Pervez T. Machine condition monitoring and fault diagnosis using spectral 
analysis techniques. Proceedings of the 1st International Conference on Mechatronics. 2001; pp. 690–
700. 

[18] Igba J, Alemzadeh K, Durugbo C and Eiriksson ET. Analysing RMS and peak values of vibration 
signals for condition monitoring of wind turbine gearboxes. Renewable Energy. 2016; 91: 90–106. 

[19] Marcal RFM, Negreiros M, Susin AA and Kovaleski JL. Detecting faults in rotating machines. IEEE 
Instrumentation and Measurement Magazine. 2000; 3(4): 24–26. 

S.Y. Ibrahim et al. / Machine Learning Motor Vibration Monitoring System1104



[20] Xiao CY, Shi BQ, Hao ZJ and Zhu SM. Gear incipient diagnosing based on EEMD and genetic-support 
vector machine. Applied Mechanics and Materials. 2013; 397-400: 2104–2110. 

[21] Contreras-Medina LM, Romero-Troncoso R, Millan- Almaraz JR and Rodriguez-Donate C. FPGA 
based multiplechannel vibration analyzer embedded system for industrial applications in automatic 
failure detection. Proceedings of the International Symposium on Industrial Embedded Systems, Le 
Grande Motte, France, June 2008; pp. 229–232. 

[22] Chaudhury SB, Sengupta M and Mukherjee K. Vibration monitoring of rotating machines using MEMS 
accelerometer. International Journal of Scientific Engineering and Research. 2014; 2(9): 1–11. 

[23] Doscher J. Adxl105: A lower-noise, wider-bandwidth accelerometer rivals performance of more 
expensive sensors. Analog Dialogue. 1999; 33(6): 27–29. 

S.Y. Ibrahim et al. / Machine Learning Motor Vibration Monitoring System 1105


