
Research on Software Fault Feature Data

Extraction Method for Software Fault

Prediction Technology

Ran YAN a,1, Meichen WANG a, Zhaowei XU a and Kai ZHANG a
a

 China Shipbuilding Software Quality & Reliability Testing Center, Beijing, China

Abstract. The correlation between software failure characteristics and software
failure directly determines the predictive performance of the failure prediction
model. The extraction of software fault features is crucial for building equipment
software fault prediction models, and is an important process to ensure accurate
prediction. However, the software fault feature data extraction method is often
complicated to use and has no pertinence to the selected software fault feature data,
and it takes a lot of time to complete the extraction steps. This paper summarizes
software metrics and software defect types based on research at home and abroad,
and selects software metrics and software defect types that are suitable for
equipment software. Using regular expression technology and CSV technology
research the automatic extraction way of software fault features, and finally
constructs a fault data set that can be used for software fault prediction models.

Keywords. Software fault feature data, data extraction, software metrics, software
defect types, Element measurement

1. Introduction

For software failure prediction models, the independent variables of the model are

software failure characteristics (or software metrics), and the dependent variables of the

model are software defects (such as defect type, defect tendency, etc.). The prediction

model mines and analyzes the historical defect data (including the metric value of each

module of the software and the defect status of the module) to establish the mapping

relationship between the software metric and the software defect, and then analyzes the

defect status of the new software module. The correlation between software fault

features and software faults directly determines the predictive performance of the fault

prediction model. If the correlation between the software failure characteristics and the

software defect is weak, the prediction performance of the prediction model is

definitely not ideal. Furthermore, if the selected software fault features have a strong

correlation with software defects, but there is little software defect data, resulting in

insufficient model training, the performance of the prediction model cannot be

guaranteed either. Therefore, the extraction of software fault features is crucial for

building software fault prediction models.

1 Ran YAN, Corresponding author, China Shipbuilding Software Quality & Reliability Testing Center,

Beijing, China; E-mail: yanran_buaa@163.com.

Advances in Machinery, Materials Science and Engineering Application IX
M. Chen et al. (Eds.)
© 2023 The Authors.

This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

doi:10.3233/ATDE230582

1088

2. Research Status

Software metrics play an important role as model independent variables in software

fault prediction models. IEEE gives the definition of software metrics in "Standard for

Software Quality Metrics Methodology": "A metric is a function whose input is

software data and output is a single value. It can be used to explain the degree to which

attributes affect software quality."[1]. According to IEEE Std. 1061-1992, software

metrics are quantitative measurements of attributes that affect software quality.

Software metrics can be classified into three categories: product metrics,

process metrics, and project metrics (such as CPU usage, memory usage).

Among them, the first two types of metrics are most widely used in software

fault prediction models.

2.1. Software Product Metrics

According to different programming languages, software product metrics can be

divided into method-level metrics for process software and class-level metrics for

object-oriented software. For process-oriented software, a method (or function) is

usually called a software module. The measurement object is a single function, and the

measurement element is called a method-level element. For object-oriented software, a

class is usually called a software module, and the measurement object is each class. At

this time, the measurement element is called a class-level measurement metrics (or

object-oriented metrics).

Note that for software product metrics, in addition to the most commonly used

method-level metrics and class-level metrics, there are several references in the

literature that refer to file-level metrics [2], package-level metrics [3], and some other

product metrics, for example, cascading style sheets metric [4], code smell metrics and

so on. The following mainly introduces the commonly used method-level metrics of

process-oriented software and class-level metrics of object-oriented software.

2.1.1. The Method-level Metrics of Process-oriented Software

According to the literature survey results, for process-oriented software, it is generally

considered that a function/method is a module. Therefore, the value of the metric is

counted in units of functions, and the prediction objects also refer to functions. Table 1

shows the commonly used method-level metrics.
Table 1. Commonly used method-level metrics.

Class Metric

McCabe Cyclomatic Complexity, Essential Complexity, Module Design Complexity

Halstead
Unique Operators, Unique Operands, Total Operator, Total Operands, Length,
Program Volume), Program Level, Programming Effort, Programming Time

Line count
Physical Lines of Code, Lines of Comment, Lines of Blank, Lines of Mixed
Code and Comment

2.1.2. The Class-level Metrics of Object-oriented Software

For object-oriented software, a class is generally regarded as a software module. Class-

level metrics are also known as object-oriented metrics. The metric object of each

class-level metric element is for each class, and the model prediction object is also each

class. The most commonly used object-oriented metric elements in the fault data set of

R. Yan et al. / Research on Software Fault Feature Data Extraction Method 1089

public object-oriented open source software include: Chidamber-Kemerer (CK) metrics,

QMOOD metrics, and other object-oriented metrics [5]. Table 2 shows the commonly

used class-level metrics.
Table 2. Commonly used class-level metrics

Class Metric

CK Metric Suite

Weighted Methods per Class, WMC
Depth of Inheritance Tree, DIT
Number of Children, NOC
Coupling between object classes, CBO
Response for a Class, RFC
Lack of Cohesion in methods, LCOM

QMOOD Metric Suite

Number of Public Methods, NPM
Data Access Metric, DAM
Measure Of Aggregation, MOA
Measure of Functional Abstraction, MFA
Cohesion Among Methods, CAM

Tang Metric Suite
Inheritance Coupling, IC
Coupling Between Methods, CBM
Average Method Complexity, AMC

Jureczko Metric Suite
 Lines of Code, LOC
Maximum of Circle Complexity, MAX_CC
Average of Circle Complexity, AVG_CC

Martin Metric Suite
Afferent Couplings, CA
Efferent Couplings, CE

Henderson Metric Suite Lack of Cohesion in Methods

2.2. Software Process Metrics

Software failures are not only related to code, but also closely related to code

modification, developers and other elements in the software development process.

Graves proposed several code modification metrics to predict the number of

software failures [6]. The author found that the code modification metrics are more

conducive to predicting the number of failures than traditional code metrics. Hassan

proposed History Complexity Metrics (HCM) by measuring the complexity of code

modification, and conducted experiments on six failure data sets. The results show that

HCM can be well used for software failure prediction [7]. The researchers designed 8

relative code churning metrics. The experimental results show that the relative code

churning metrics are very beneficial to the prediction of module failure density. In

addition, 18 kinds of code modification metrics are designed for software failure

prediction according to the modification times, modified lines of code and other

information. Some researchers [8] proposed Developer Micro Interaction Metrics

(DMIMs) for software fault prediction by measuring the interaction information of

software developers, and found in the experiment that the combination of developer

interaction micro-interaction metrics Traditional class-level metrics can significantly

improve the predictive performance of failure propensity models. Some researchers

have tried to use the dependencies between modules to predict software module failures.

For the first time, they proposed a metric based on the complexity of program module

dependencies as an independent variable to predict the number of software failures.

2.3. Software Defect Classification

The purpose of software defect classification is to form multi-dimensional

classification information for defect management and data support for defect

R. Yan et al. / Research on Software Fault Feature Data Extraction Method1090

measurement analysis. At present, there is no unified standard for software defect

classification. The existing software defect classification methods can be classified into

three categories: defect classification methods proposed by famous scholars,

classification methods proposed by large research institutions, and classification

methods published in national standards.

3. Overall Research Proposal

Through investigation and reference to authoritative documents at home and abroad,

the set of candidate defect types of equipment software is determined, and on this basis,

the defect types that meet the characteristics of equipment software defects are

screened.

Then, according to the selected equipment software measurement metrics set, use

the software static analysis tool, Testbed, to statically scan the given equipment

software project to obtain a static analysis report containing the measurement element

information of each module of the software. Since the report is in HTML format , you

need to use regular expression technology to extract the metric value of each module

from the analysis report. At the same time, according to the test report provided by the

tester, the defect information statistics table of each module of the software can be

obtained through analysis and statistics. The name of the software module is the key

word. The equipment software module measurement metadata table and the equipment

software module defect statistics table can be correlated and matched, and then the

equipment software fault data set can be obtained.

4. Researching on Extraction Method of Software Fault Feature Data

4.1. Selection of Software Fault Characteristic Data

4.1.1. Software Metrics

By analyzing the historical data of software failures, it is found that the software

metrics are strongly correlated with software failures or defects, and are easily obtained

in software development units and software evaluation units, as shown in table 3.

Table 3. Common Software Metrics.

Metrics Scope Metrics Scope

CK Metric Suite Procedure Exit Points Procedure
Essential Knots Procedure Executable ref. Lines File
Essential Cyclomatic Complexity Procedure Number of Procedures File
Knots Procedure Total source Lines File
Cyclomatic Complexity Procedure Total Comments Procedure
Total Classes Declared Class Number of Globals Procedure
Executable reformatted Lines Procedure Fan in Procedure
Number of Basic Blocks Procedure Fan out Procedure
Unreachable Lines File Invocation Path Procedure
Number of Loops Procedure Procedure Formal Parameters Procedure
Procedure Entry Points Procedure Global Variables Procedure

R. Yan et al. / Research on Software Fault Feature Data Extraction Method 1091

4.1.2. Classification of Software Defect Types

Table 4. Software defect classification.

Metrics Scope

requirement Software Requirements Specification
programming System design or software design, software architecture
procedure software program
code Irregular coding

orthers
Documents such as software plans, requirements, tests, users, operation
manuals, user manuals or data files, etc.

According to the description in GJB2786A, the defect types are classified by the nature

of defects, and the categories are requirement, programming, procedure, code and

others, as shown in table 4. The subcategory is table 5.

Table 5. Subcategory of software defect.

Metrics Scope Metrics Scope

Requirement Requirement is incomplete,
requirements/design is inconsistent
Requirement is redundant
Requirement is unnecessary
Requirement is incorrect
Requirement is ambiguous
Requirement is unverifiable
Requirement identification is incomplete

code

Unused procedural parameter
Array bound exceeded
The parameters of shifts in the
prohibit shift operation is
negative
Unsigned expression negated
Equality compare of floating
point
Divide by zero
Reformated lines
More than 7 parameters in
Procedure
Memory not freed after last
reference
Assignment operation in
expression
Assignment operation in boolean
expression
Go to detected

Programming Design is incomplete
Module planning is unreasonable
The allowance design does not meet the
requirements
Interface design is incorrect
Algorithm design is incorrect
Data structure design is unreasonable
Interface design is unreasonable
Design identification is incorrect

Procedure

Function not implemented
Performance not achieved
Parameter initialization is not
Performed/Parameter initialization error
Control flow error
Logical error
Identifier redefinition
Assignment error
Interface parameters do not match
Interface definition error
Interface failure/Exception handling error
Algorithm is error
Code is unreachable

others

Specification/standard is
understood inaccurate
Test file is incorrect
Data base/data file is incorrect
Manual is incorrect
The tracking relationship is
incorrect
Paragram comment is inaccurate

Considering the defects caused by many codes due to irregular coding format or

non-compliance with coding rules in the software, this paper increases the defect

categories of coding classes, referring to the content of GJB8114 "C/C++ Language

Programming Security Subset", and adding mandatory rules to defects.

4.1.3. The Software Failure Metrics (Fault Features) and Software Defect Type Data

According to the actual software testing project, through the research and analysis of

the authoritative literature related to the software measurement element, combined with

R. Yan et al. / Research on Software Fault Feature Data Extraction Method1092

the standard, and the analysis of the characteristics of the equipment software code,

table 6 is the adopted software failure metrics.

Table 6. Software failure metrics (failure features).

Metrics Type Metrics Type

Executable reformatted Lines Numeric
Lines, Code Comments/Exe.
Lines

Numeric

Number of Basic Blocks Numeric Knots Numeric

Average Length of Basic Blocks Numeric Cyclomatic Complexity Numeric

Procedure Entry Points Numeric Essential Knots Numeric

Procedure Exit Points
Numeric Essential Cyclomatic

Complexity
Numeric

Total Comments Numeric Procedure Structured (SPV) Numeric

Comments in Headers Numeric Number of Loops Numeric

Comments in Declarations Numeric Depth of Loop Nesting Numeric

Comments in Executable Code Numeric Number of Order 1 Intervals Numeric

Blank Lines Numeric Maximum Interval Nesting Numeric

Executable reformatted Lines Numeric Reducible (Intervals) Numeric

Total Comments/Exe. Lines Numeric Globals in Procedure Numeric

Header Comments/Exe. Lines Numeric Fan in Numeric

Declaration Comments/Exe Numeric Fan Out Numeric

Through the investigation and analysis of authoritative documents related to

software defect types, as well as the analysis of the characteristics of equipment

software defects, the classification standards for equipment software defect types are

shown in table 7.

Table 7. Adopted software defects types.

Defect Type

Code is unreachable Requirement is incorrect
Interface parameters do not match Manual is incorrect
Function not implemented Control flow error
Interface failure/Exception handling error Interface design is incorrect
Parameter initialization is not performed/Parameter
initialization error

Divide by zero

Logical error Pointer assignment to wider scope
Handing boundary is incorrect Equality comparison of floating point
Requirement is ambiguous Assignment operation in expression
Design is incomplete Assignment operation in boolean expression
Memory not freed after last reference Goto detected
requirements/design is inconsistent

A module has different types of failures. Supposing a module has k types of failure,

denoted as
1 2
, ,...,

k
F F F , and the number of each fault is

1 2
, ,...

k
n n n .

 Select the fault type with the largest number of faults as the fault type of the

module, and the number of faults is
1 2

max{ , , , }
k

n n n n � 。

 If there are two or more fault types with the largest number of faults, one of

the fault types will be randomly selected as the fault type of the module.

When the number of faults is counted, the number of faults of this module is

1

k

ii
n n



 .

R. Yan et al. / Research on Software Fault Feature Data Extraction Method 1093

4.2. Extract Software Fault Feature Data

In the research process, it is found that the measures related to software code quality

introduced can be obtained from the tool software, such as Testbed, Guest, etc.,

Testbed tool has been widely used internationally, so we can obtain these measures

from the HTML file generated by the Testbed tool. Figure 1 shows the block diagram

of software fault feature data extraction.

Figure 1. Principle of Software Fault Feature Data Extraction.

Regular expression technique is often used to retrieve and replace text that

conforms to a pattern, or rule. Regular expressions are a logical formula for string

operations, which using some specific characters defined in advance and the

combination of these specific characters, to form a Rule String. This Rule String is

used to express a filtering logic for strings. A regular expression is a text pattern that

describes one or more strings to match when searching for text. The reason why regular

expression technology can be used here is the HTML-formatted report file that should

be generated for Testbed, where all the data is identified and described in a specific

format. Regular expression techniques can be implemented in a variety of coding

languages, such as Matlab, C/C++, etc.

After obtaining the metric metadata through regular expressions, we need to save

the data output as a CSV file. CSV read and write technology is used here. CSV

(Comma-Separated Values) files are one of the most popular text file formats for

programs to share information and exchange data. Its files store tabular data (numbers

and text) in plain text. Finally, the module name is used as the keyword, and the

matching metric metadata table and the failure data table or the test report are

associated.

Software metrics and fault data extraction steps are as follows:

 Use software testing tools, such as Testbed, to obtain static analysis reports in

HTML format.

 Determine the software metrics to be extracted, and generate automatic

extraction tools based on regular expression technology and CSV extraction

technology to extract the software metrics.

Using the software module name field as the keyword, the two data tables can be

matched and merged to obtain the final software failure data set.

4.2.1. Get the Static Analysis Report of the Software in HTML

Given the source code of a software project, first use Testbed for static analysis of the

source code. Testbed is a professional software testing tool launched by LDRA

company, which is powerful, comprehensive and easy to use, not only suitable for host

R. Yan et al. / Research on Software Fault Feature Data Extraction Method1094

platform software testing, but also for embedded software testing, and has been

successfully used in software testing departments of major research institutions at home

and abroad. Testbed tool generates a static analysis report in HTML format, which can

be obtained using a browser as shown in figure 2.

As shown in figure 2, the report records in detail the metric metadata of each

module of the analyzed software. In the figure, Complexity Metrics represents the

metric group name, which includes specific metrics such as Knots, Cyclomatic

Complexity, etc. tsdview .cpp represents the file name, and the first column in the

table indicates the names of the modules of the file. The green number indicates the

value of the corresponding metric. The letter P in parentheses after the number

indicates Past, meaning that the corresponding metric value does not exceed the

threshold specified by the tool.

Figure 2. Metric metadata for modules in the
Testbed static analysis report

 Figure 3. HTML format analysis report source
code

The source code of the above HTML file can be viewed directly using any text

viewing tool, as shown in figure 3. Obviously, all data is uniformly identified and

described in a specific format. Therefore, regular expressions can be used to extract the

metric metadata required for this project.

4.2.2. Automatic Extraction Tool for Software Metrics and Software Failure Data

Based on Regular Expressions

(1) Extract Metric Information Using Regular Expression Technique

Regular expressions are often used to retrieve and replace text that conforms to a

pattern (rule). Regular expressions are a logical formula for string operations, that is,

using some specific characters defined in advance, and the combination of these

specific characters, to form a "rule string", this "rule string" is used to express a

filtering logic for strings. A regular expression is a text pattern that describes one or

more strings to match when searching for text. The reason why regular expression

technology can be used here is the HTML-formatted report file that should be

generated for Testbed, where all the data is identified and described in a specific format.

After obtaining the metric metadata, you need to save the data output as a CSV file.

CSV read and write technology is used here. CSV (Comma-Separated Values) files are

one of the most popular text file formats for programs to share information and

exchange data. Its files store tabular data (numbers and text) in plain text. Plain text

means that the file is a sequence of characters and contains no data that must be

interpreted like binary numbers.CSV files consist of any number of records, separated

by some kind of newline character; Each record consists of fields, and the separators

between the fields are other characters or strings, most commonly commas or tabs.

R. Yan et al. / Research on Software Fault Feature Data Extraction Method 1095

Almost all programming languages support reading and writing CSV files, and most

support reading and writing CSV files by directly calling internally defined functions.

For example, the csvread function and the csvwrite function in MATLAB. Through

programming, regular expressions can be used to extract the values of the metrics of

each module of the software, as shown in figure 4. In the figure, the first column

records the names of each module, and the remaining column headers represent the

names of each metric. Each row in the table corresponds to a software module.

Figure 4. Module metric metadata extracted from

a report file using regular expression techniques.

Figure 5. Software test report.

(2) Associate metrics metadata and fault data to construct fault datasets

The principle is to use the module name as a keyword to correlate the matching

metric metadata table and the failure data table, or test report. Specifically, after

obtaining the metric metadata of each module of the software, the fault condition of

each module is also required, that is, if there is a fault, the specific fault type needs to

be known. For any software development enterprise, sufficient software testing is

required before release, and software testers will compile software test reports, which

include various description information related to software failures, such as the module

in which the fault is located, the type of fault, and the test cases that stimulate the

failure. Based on this information, the software module fault information statistics table

shown in figure 5 can be obtained. As can be seen from the figure, the first column in

the table is the fault ID, the second column is the name of the faulty module, the third

column records the fault type, the fourth column is the description of the fault, and the

fifth column is the file where the faulty module is located. Note that a software project

typically contains multiple files, and a file contains multiple modules. The file name

and module name together uniquely identify a specific module.

Obviously, both the software module metrics metadata table (shown in figure 2)

and the software module failure statistics table (as shown in figure 5) contain software

module name fields. Therefore, by using the software module name field as the

keyword, the two data tables can be matched and merged to obtain the final software

failure data set. The first column of the fault dataset is the name of each software

module, the last column is fault type information, and the other columns represent

individual metrics.

Figure 6. Software fault information table in CSV format.

R. Yan et al. / Research on Software Fault Feature Data Extraction Method1096

Finally, the software module metric data table and the software module failure

statistics table are combined into a CSV format table, as shown in figure 6.

4.2.3. Advantage

Integrating software fault information into CSV format has two advantages.

a) Almost all programming languages support the reading and writing of CSV files,

and most of them support reading and writing CSV files by directly calling

internally defined functions;

b) The integrated CSV file Id number, software measurement attribute value, fault

type value can be directly converted into numerical type, and its file stores

tabular data (numbers and text) in plain text, plain text means that the file is a

sequence of characters, does not contain data that must be interpreted like binary

numbers, providing good conditions for the call, reading, use and fast search of

software failure prediction data.

5. Conclusion

Firstly, collect the failure data of various equipment software, and then analyze the

characteristics of this data. Combined with domestic and foreign research, the software

metrics and software defect types are summarized, and the software metrics and

software defect types suitable for equipment software are selected. According to the

above selected software metrics and defect types and the way to obtain data, a method

of automatic extraction of software fault features is proposed by regular expression

technology and CSV technology. Finally a fault dataset that can be used for software

failure prediction model is constructed.

References

[1] Schneidewind N. IEEE Standard For A Software Quality Metrics Methodology Revision And
Reaffirmation. In Proceedings of IEEE International Symposium on Software Engineering Standards.
1997; pp. 278-278.

[2] Yatish S, et al. Mining software defects: Should We consider affected releases. 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). 2019; pP. 654-665.

[3] Zhao Y, et al. Understanding the value of considering client usage context in package cohesion for
fault-proneness prediction. Automated Software Engineering. 2016: 1-61. DOI: 10.1007/s10515-016-
0198-6.

[4] Serdar BM and Diri B. Defect prediction for Cascading Style Sheets. Applied Soft Computing. 2016;
DOI: http://dx.doi.org/10.1016/j.asoc.2016.05.038.

[5] Jureczko M and Spinellis DD. Using object-oriented design metrics to predict software defects. In
DepCoS-RELCOMEX. 2010; pp. 69--81.

[6] Song Q, Guo Y and Shepperd M. A comprehensive investigation of the role of imbalanced learning for
software defect prediction. IEEE Transactions on Software Engineering. 2019; 45(12): 1253-1269.
DOI: 10.1109/TSE.2018.2836442.

[7] Torgo L, et al. SMOTE for regression. In Progress in Artificial Intelligence. Berlin, Heidelberg:
Springer Berlin Heidelberg: Berlin, Heidelberg. 2013; p. 378-389.

[8] Lee T, et al. Developer micro interaction metrics for software defect prediction. IEEE Transactions on
Software Engineering. 2016; 42(11): 1015-1035. DOI: 10.1109/TSE.2016.2550458.

R. Yan et al. / Research on Software Fault Feature Data Extraction Method 1097

