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Abstract. This work introduces a new approach for probabilistic elastoplastic 

topology optimization based on the improved bidirectional structural optimization 
(BESO) technique. To consider uncertainties, the volume fraction and the material 

properties are considered randomly. Thus, the reliability-based design is integrated 

into the deterministic design by applying a reliability constraint to the optimization 
problem. Furthermore, using limit analysis, a bound is applied to the plastic limit 

load multipliers to govern the plastic behavior of the problems. Results from a 2D 

benchmark problem are used to illustrate how adequate the approach that has been 
provided is. Also, a 2D elastoplastic numerical example is shown to illustrate the 

proposed method's capability of identifying the best topology for elastoplastic 

models in the context of reliability-based design. The results indicate that the 
reliability constraints work effectively as a bound that reduces the yielding states. 
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1.  Introduction 

The objective of topology optimization of structures is to produce superior structural 

performance while satisfying various restrictions. Compared to other methods of 

structural optimization, topology optimization may be a far more flexible tool for helping 

engineers create innovative and extremely productive structures. According to several 

academic studies and investigations, it is one of the most lucrative business strategies [1]. 

In addition to building large-scale structures, it may be used to create nanoscale materials. 

Zhou and Rozvany [2] used continuum-based optimality criteria to identify the optimal 

topologies of various problems. Also, an approach for optimizing the topology of 

structures under diverse loading conditions was developed by Li et al.[3]. Topology 

optimization is regarded as a dynamic study and development field. Numerous 

algorithms have been created. The bidirectional structural optimization (BESO) method 

is among the most advanced techniques in this area [4,5]. BESO operates by concurrently 

removing and materials adding from the least efficient sections to the most efficient parts, 

such that the resultant topology is optimal. A parallel topology optimization technique 

for dynamic and static properties of multiphase materials was suggested by Gan and 
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Wang [6] using the BESO method. Wang et al. [7] proposed a multi-resolution topology 

optimization algorithm by developing BESO method. 

There are still a lot of uncertainties in the topology optimization, such as varied 

applied load conditions, material properties, and other important factors [8,9]. Therefore, 

various optimization methods and frameworks have been developed to successfully deal 

with uncertainty in structural design such as reliability-based topology optimization and 

robust topology optimization algorithms [10–12]. A novel technique of integrating 

reliability-based design into thermoelastic structural topology optimization was 

proposed by Habashneh and Rad [13]. 

When a material undergoes elasto-plastic deformation, its properties will change 

depending on the amount of plastic strain applied, resulting in a nonlinear connection 

between stress and strain. This will have an effect on the strain energy, which is 

significant since it is often the focus of structural engineering challenges that aim to 

reduce energy consumption. Using a single constraint on the accumulation of similar 

plastic strains, Amir [14] demonstrates a way for creating stress-constrained optimum 

topology designs. After using the basic theory of plasticity, Tauzowski et al. [8] came up 

with a new way for optimizing the topology of elasto-plastic structures from the 

perspective of reliability. 

The proposed work in this paper is a continuation of the research leading to the 

improvement of the BESO method [15,16] where a novel algorithm of the BESO method 

is proposed by adopting reliability-based topology optimization of elastoplastic analysis 

in the face of uncertainties in which the volume fraction and material properties are 

assumed to be random variables. 

2.  Problem Statement 

2.1.  Reliability-Based Analysis 

By assuming two independent random variables (�� and ���, where  �� stands for the 

non-negative limit of ��. Therefore, �� � �� defined the failure problem. Considering 

that the PDFs for �� and �� are ���	��� and ���	���, respectively. according to this basic 

concept of reliability analysis, the probability of failure (
�) then is constructed as[17]: 


� � �
�� � ��� � �� ���	��������
���	���������� (1) 

An alternative concept in terms of the limit state function is formulated as: 

�	��� ��� � �� � ��� (2) 

where �� � �� measures the failure domain 	���. Accordingly, we can calculate 
� by: 


� � ��	��� (3) 

Also, 
� can be calculated as: 
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� � � �	���� � � �	�����
���	������� 

 (4) 

In the accessible literature, one can find a detailed description and the formulations 

of Monte-Carlo sampling (MCS) method which is used to determine the 
�. Therefore, 

here in this work we only focus on how the reliability constraint could be utilized to form 

the probabilistic problem. To establish the reliability constraint, the reliability index may 

be used as [13]: 

!"#$�%" � !&#'& � � (5) 

Considering that Equation (5) shows the associated reliability condition with the 

volume fraction. Furthermore, the following expressions are used to obtain !"#$�%"  and 

!&#'&: 

!"#$�%" � �()*+
��"#$�%",- (6) 

!&#'& � �()*+
��&#'&,� (7) 

2.2.  Elastoplastic Limit Analysis 

The basic concept of limit analysis can be illustrated as follows: Consider an elasto-

plastic body that is always being exposed to an increasing force �. . For a formal 

expression of the proportionate loading, one may use the following: 

The limit analysis problem is exemplified as follows: Consider an elastoplastic body 

exposed to a certain force �. and increasing this force continuously. The proportionate 

loading may be expressed as follows: 

�. � /��  (8) 

/  is a scalar quantity that increases monotonically and is known as the load 

multiplier. �  represents the initial specified externally applied forces. As / continues 

to increase, the regions of the body which contain plastic state gradually expand, till 

reaching a certain intensity (/0�, a free plastic flow is attained to the point where a rise 

in plastic deformations are achievable for the first time under constant external stresses 

acting during the loading process. Therefore, the ultimate plastic load of the body is �0 �
/0� . 

2.3.  Developed Optimization Algorithm 

A brief description of the objective and various constraints is presented here, while the 

full description of the BESO method including the formulations and updated techniques 

can be found in the earlier work of the authors [15,16]. Using the aforementioned steps, 
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one may determine the uniqueness of the extended portion of the technique. Hence, the 

probabilistic optimization problem considering the plastic ultimate load constraint is 

constructed as: 

1232/2456�7 � �89:8 (9) 

;8<=5>?�?@6���AB ���CA.D.
E

.F*
�� �� (10) 

!"#$�%" � !&#'& � � (11) 

D. G � H��IJ (12) 

/K � /0 � �� (13) 

where the objective function of this optimization problem is to minimize 7 which is the 

mean compliance, : is global stiffness matrix and 8 represents the nodal displacement 

vector. Besides, AB ,�L , A. , D.  are total volume, total number of elements, elemental 

volume and design variable, respectively. Equation (11) shows the reliability constraint 

and Equation (13) indicates the constraint for plastic ultimate load multiplier, which 

states that, according to the static principle, /K must be less than or equal /0. 

3.  Numerical Examples 

A reliability-based geometrical nonlinear elastic numerical example of L-shaped beam 

is considered as the first example and the results of this problem are compared with a 

benchmark results which was performed by Movahedi et al. [16] to approve the validity 

of the proposed method. Also, another example is considered in the case of elasto-plastic 

material which is a L-shaped beam. It is worth mentioning that the MCS method is 

adopted to perform probabilistic evaluations. A� , and the material properties are 

considered randomly to represent uncertainties. 

3.1.  Two-Dimensional Elastic Problem  

The design domain of the considered L-shaped beam is produced by fixing the L-shaped 

beam at the top as it is shown in Figure 1. The considered applied load F is IMNL. 

Material properties are O��P
Q, and ��R for Young’s modulus and Poisson’s ratio values, 

respectively. The BESO parameters are assumed as the following: STU#V� � IW,  XT �
IW�  Y � IW� Q3��ZU.[� � �I\�// . To indicate uncertainties, A� , and the material 

properties as random variables. Also, for MCS purposes, ], which is the number of 

sampling points, is considered R�� ^ I�_. 
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The effectiveness of the suggested technique was shown by comparing the 

optimized forms in the deterministic case to the results of a benchmark issue previously 

solved by Movahedi et al. [16] of linear and geometrically nonlinear designs. Table 1 

displays the results of the calculations performed to determine the optimum topology, 

complementary work 	`a�, and maximum Huber-Mises-Hencky stress (bHMH
U#V) of both 

linear and geometrically nonlinear designs. As is readily apparent, geometrically 

nonlinear designs have a lower complementary work value than their linear counterparts. 

 

Figure 1. 2D L-shaped example4. 

Table 1. Obtained deterministic results. 

Design Optimized shape `a(kJ) bHMH
U#V	1
Q� 

Linear  

 

5.31 314 

Geometrically nonlinear  

 

5.26 310 

The results of the proposed algorithm by considering  A�, and the material properties 

as random variables are presented in Table 2 in which it shows the final optimized shapes, 

maximal Huber-Mises-Hencky stress, and the complementary work in the case of 

probabilistic designs. Taking into account that the results show two different values of 

!"#$�%" . Probabilistic designs have been shown to have less complementary work 

compared to deterministic designs, both for linear and geometrically nonlinear. 

Considering geometrically nonlinear results, the complementary work has been 

effectively reduced by Ic�IcW  from d�Mc�Ne  in the case of deterministic design to 

f�fI�Ne in the case of the probabilistic design when !"#$�%" � R�OO. In the case of linear 

results, the complementary work is declined by g��fW  from d�RI�Ne  in the case of 

deterministic design to f�\R�Ne  in the case of probabilistic approach by considering 

!"#$�%" � R�OO . Furthermore, the maximal Huber-Mises-Hencky stress produced by 

probabilistic designs is less than that produced by deterministic designs in both linear 

and geometrically nonlinear designs. Both the maximum stress and the complementary 

work values for linear and geometrically nonlinear systems rise with decreasing !"#$�%"  
in the probabilistic situation. 
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Table 2. Obtained probabilistic results. 

Design Optimized shape `a(kJ) bHMH
U#V	1
Q� 

Linear     

!"#$�%" � f�ff 

 

4.54 299 

!"#$�%" � R�OO 

 

4.83 302 

Geometrically nonlinear     

!"#$�%" � f�ff 

 

4.32 292 

!"#$�%" � R�OO 

 

4.41 295 

3.2.  Two-Dimensional Elastoplastic Problem 

A probabilistic elastoplastic design of a 2D L-shaped beam problem is considered the 

second example. As was previously indicated, MCS is adapted to the process of 

evaluating degrees of uncertainty. With the material properties and A�  modeled as 

independent random variables, the probabilistic design is presented. Note that this 

example is identical to the one in Section (3.1) in terms of design domain, material 

characteristics, BESO parameters, and the number of MCS simulations. Elasto-plastic 

modeling assumes a yield stress of II��1
Q in the beam at its initial, predetermined 

load of � � f�NL. For the whole design space, the plastic limit load multiplier /0 �
f�Md is used. There are three load examples presented: �* � ���d�� , �h � �M�� , and 

�i � �R�� , all of which serve to illustrate the impact of load multiplier. The results of 

considering the effect of plastic-limit load multiplier in the case of probabilistic designs 

considering different values of !"#$�%" are presented in Table 3. As expected, the absence 

of plastic zones is most apparent at the lightest load condition. In the second scenario, 

however, we see plastic areas. Large plastic areas are produced in the third scenario. Also, 

it can be noted that the percentage of the yielded elements within the resulted shape 

increases as !"#$�%" decreases for each load case. For instance, in the case of �i � �R�� , 
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the percentage of yielded elements increased by RR�ggW from M��cdW when !"#$�%" �
f�g� to RR�\dW�when�!"#$�%" � R�Og� 

Table 3. Resulted topological shapes and jkj stresses according to the different load cases. 

!"#$�%" �* � ���d��  

Ratio of 
yielded 

element

s 	W� 
�h � �M��  

Ratio of 
yielded 

element

s 	W� 

�i � �R��  Ratio of 
yielded 

element

s 	W) 

4.9 

 

0 

 

0.22 

 

20.65 

3.79  

0 

 

0.38 

 

33.85 

 

Table 4 compares yielding state discrepancies between deterministic and 

probabilistic designs. Probabilistic yielding states have fewer components than 

deterministic ones. By considering !"#$�%" � R�Og�  and load case ( �i � �R�� ), 

probabilistic design with  provided d�MdW fewer model components than deterministic 

design. 

Table 4. Applied load and yielding state. 

Ratio of the applied load Probabilistic design (!"#$�%" � R�Og)   Deterministic design 

�i � �R��  

  

 

4.  Conclusions 

This work uses the expanded BESO approach to conduct reliability-based design for 

elastic and elasto-plastic topology optimization of structures with uncertainties. 

Optimization considers volume fraction and material properties randomly owing to 

uncertainty. Thus, reliability theory and topology optimization are used to identify the 
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best structural topology that meets reliability criteria. Monte-Carlo simulation is also 

used to calculate reliability index.  

This study's key findings: 

� Since failure factors are taken into account in the reliability-based design, 

geometrically nonlinear systems have complementary work less than deterministic 

designs. 

� Considering the volume fraction and material properties as random variables have 

influenced the resulting shapes. 

� In probabilistic elastic designs, geometrically nonlinear designs have lower values 

of maximum Huber-Mises-Hencky stress than deterministic linear stiffness designs. 

Also, the maximum stress rises when the reliability index decreases. 

� Since failure parameters are addressed in elastoplastic design, the probabilistic 

yielding state has fewer elements than the deterministic yielding state. 
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