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Abstract. In the multi-objective performance optimization process for dual-fuel 

engines, the conflict between emissions and fuel efficiency is a consideration. To 
find a satisfactory compromise among many optimal solutions, reduce the difficulty 

of selecting solutions, and respond to different needs, a decision-making preference 

optimization strategy is introduced. The reliability prediction algorithm of the 
micro-ignition diesel/natural gas (NG) dual-fuel engine is built using support vector 

machines (SVM). The performance prediction model is combined with the 

optimization algorithm, and the preference information of the decision-maker (DM) 
is introduced into the optimization process, to guide the population evolution 

process to the direction that the DM is interested in, and achieve multi-objective 

preference optimization. Selecting nitrogen oxide (NOx) emission and braking 
specific fuel consumption rate (BSFC) as the optimization targets, the optimal 

Pareto front surface is obtained. It can be seen from the simulation results that after 

introducing the decision preference, the evolution of the population can proceed in 
the direction of interest to the DM. Preference optimization can be achieved by 

rationally configuring the preference strength parameter δ, the weight vector w, and 

the reference point g. The combination of control parameters corresponding to the 
two preferences was downloaded to the ECU for bench test, and compared with the 

original data, it was found that when low emissions are preferred, the NOx emission 

meets the IMO Tier-Ⅲ limit under all working conditions, and the average NOx 
emission is 1.22g·(kW·h)-1, which is 78.9% lower than the original engine. At the 

same time, it was found that even with lower emissions, fuel consumption was 

reduced by 4.94% compared to the original engine. The preference for lower fuel 
consumption is 3.68% lower than the preference for lower emissions, but the 

deterioration of NOx emissions is obvious. 

Keywords. Preference decision-driven, multi-objective optimization, dual-fuel 

engine, performance optimization 

1. Introduction 

In response to the clash between the aim of high economy and thermal efficiency and the 

growth in emissions, engine management and conservation of energy and decreased 

emissions solutions are currently created. As a result, numerous studies have been 

conducted to optimize fuel injection strategy, adopt new combustion technologies, adopt 

alternative fuels, and add after-treatment equipment in order to meet the aim of energy 
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savings and pollution reduction. Due to its inherent low cost and plentiful supplies, 

compressed NG has caught the interest of researchers within the current energy mix [1]. 

However, using NG results in higher levels of unburned hydrocarbons and carbon 

monoxide. High productivity and minimal emissions, and an equilibrium between 

hydrocarbons and nitrogen oxides may all be attained by improving the engine’s 

combustion chamber’s structural layout, the fuel injection parameters, and the lean 

combustion conditions [2]. As the injection pressure rises, the rate at which methane 

flames propagate and the suggested thermal efficiency both rise, according to Chen’s 

research of the impact of injection pressure on the operation and emissions of a dual fuel 

engine [2]. However, this causes an increase in total hydrocarbon emissions as the 

methane remaining in the cylinder wall gap cannot be ignited. Wu et al. [3] indicated that 

the pilot fuel injection timing and pressure are crucial parameters to achieve efficient and 

clean combustion at fixed operating conditions. The performance of dual-fuel engines 

was examined by Yousefi et al. [4] who discovered that advanced injection time would 

boost peak cylinder pressure, thermal efficiency, and NOx emissions throughout the 

entire operating condition range. They also went into great detail about how the primed 

diesel injection strategy affects engine performance and emissions at low loads and 

mentioned how using a twice-injected primed fuel strategy can help lower peak cylinder 

pressure and achieve a balance between NOx and CO and NOx and CH4. The study 

analysis discussed above demonstrates that the ignition fuel injection parameters have a 

significant influence on the property of dual fuel engines, choosing an appropriate 

arrange for the pilot fuel injection parameters is critical for addressing the high efficiency 

and low emission of dual fuel engines.  

Furthermore, researchers discuss the influence of NG substitution rate (SR) on the 

nature of dual-fuel engines [5]. Although higher SR can reduce NOx emissions, they can 

increase HC emissions. The border of the SR is constraint on the engine thermal load. 

Chon et al. [6] investigated the impact of different air-fuel ratio (AFR) on engine 

performance and obtained an equilibrium between fuel consumption (BSFC) and NOx 

emissions by optimizing the AFR and injection parameters. It is not difficult to find what 

when designing controllers, it is necessary to obtain the optimal combination of control 

parameters to reduce pollution emissions under different operating conditions and 

improve economy.  

However, reconciling the conflict between emissions and fuel consumption in dual-

fuel engines requires optimizing controllable parameters, which requires solving 

complex multi-objective optimization problems [7]. The NSGA-II method was 

employed in the literature [8] to optimize the injection parameters as well as the engine 

combustion chamber geometry. Discussion also included the impact of pilot fuel 

injection timing and pre-injected diesel mass on emission characteristics. The ideal 

design point for reducing both BSFC and NOx emissions was found by CHO et al. [6] 

using a Pareto optimization technique. Additionally, a number of other optimization 

techniques have been applied to enhance engine performance and emissions [9]. 

The full-service functioning of maritime dual-fuel engines still needs improvement, 

notwithstanding the relative thoroughness of earlier research. more specifically, existing 

studies have shown that multi-objective optimization techniques usually obtain a set of 

mutually exclusive optimal solutions widely distributed in the objective space. The DM, 

however, is typically more interested in a particular solution or a number of options rather 

than the overall Pareto optimum solution in practical applications. To meet the needs of 

practical applications, this study uses preference multi-objective optimization to solve 

the above problem. A stringent partial order set is constructed on the Pareto non-
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dominated solution set by adding preference information to the multi-objective 

optimization framework, which directs the algorithm search in the direction of the DM’s 

preferred area. Pareto-optimal solutions are obtained along with solutions that are 

satisfactory to the DM. First, a support vector machine (SVM)-based engine performance 

prediction model is created using data from bench trials on the emissions and fuel 

consumption of dual-fuel engines. Then the prediction model is combined with an 

optimization algorithm to perform preference optimization of the engine parameters for 

full operating conditions. Finally, the obtained preference solution is compared with the 

optimal solution without preference driving. It is confirmed that the preference-driven 

optimization strategy is feasible. 

2. Test 

2.1. Dual-Fuel Engines 

The test was conducted using a six-cylinder inline four-stroke engine that has a 

compressed NG intake system. Table 1 displays the engine’s technological specs. 

Table 1. The test engines’ technical details. 

Parameters Value 
Rated speed (r/min) 1500  

Rated power (kW) 255  

Max fuel injection pressure (bar) 1500  

Number of cylinders & layout 6-inline 

Compression ratio 16.5:1 

Displacement (L) 12.155 

Stroke (mm) 155 

Bore (mm) 129 

A 6-cylinder inline 4-stroke dual fuel engine fitted with a compressed NG delivery 

system was used for the experiments. To deliver the load, the flywheel end was attached 

to an eddy current dynamometer. To monitor the engine running condition and 

performance data, the test equipment included an ES636 meter, an E+H flow meter, an 

emission analyzer, and an AVL fuel consumption meter. The E+H flow meter is used to 

monitor the NG flow, in order to precisely define the engine economy index. The full 

experimental test bench’s schematic diagram is shown in Figure 1. Table 2 displays the 

range and accuracy of all test instruments. 

The low calorific value of NG is used to convert it to diesel use, and the 

mathematical calculation is as follows, in order to appropriately reflect the economic 

indicators of the dual-fuel engine. 
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where, �� indicates a low calorific value, (J kg-1). The mass flow of the fuel is denoted 

by m, in (kg·h-1). 

Table 2. Main equipment. 

Equipment Application  Range 
AVL 736  Fuel consumption meter  0-125 kg/h 

AVL AMA i60  Emission analysis 

NOx 0-10000 

CO/CO2 0-5000 

THC/CH4 0-20000 

PROMASS 83 A DN04/ 1/8’’ Air/Gas flow measurement  0-90 kg/h 

Dynamometer Load torque  0-320 kW 

Magnetoelectric sensor Engine speed  0-10000 r/min 

 

Figure 1. The experimental setup is illustrated graphically. 

2.2. Input and Output Parameters and Ranges 

A diesel/NG dual-fuel engine that uses diesel as the pilot fuel and the multiple injection 

control approach is the study subject of this work. The ratio of NG to diesel, or the 

replacement rate of the dual-fuel engine, must be considered in the modeling analysis of 

the dual-fuel engine in addition to the conventional performance parameters such as rail 

pressure, injection timing, and pre-injection volume, which have a significant impact on 

the engine performance. Better atomization can boost engine efficiency but raises in-

cylinder temperature, which increases NOx emissions [10]. Fuel atomization is 

determined by the fuel system injection pressure. although the BSFC rises [11], 

postponing the main injection period can successfully reduce NOx emissions. Zhao et al. 

[12] found through experimental studies that NOx emissions are reduced with the 

advancement of pre-injection timing which is conducive to the optimization of emission 

and economy. Another study showed that proper pre-injection can effectively improve 

engine economy and reduce NOx emissions [13]. Wang et al. [14] showed that NOx 

emissions and BSFC decreased with increasing EAC, but when the EAC was too high, 

it was easy to cause misfire phenomenon; higher NG replacement rate led to lower 

maximum in-cylinder temperature and reduced NOx emissions, but the indicated power 
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decreases and some economy is lost [15]. Additionally, a few earlier studies 

demonstrated the limited impact of control settings on emission and BSFC patterns [16]. 

Different operating points are determined according to engine speed and torque, and 

the best combination of control parameters under various operating points is determined 

by optimizing the remaining six control parameters. The input parameters of the support 

vector machine prediction model are set as follows: speed, torque, rail pressure, MIT, 

PIT, PIQ, EAC, and SR. NOx emission and BSFC are specified as the output parameters.  

The boundaries of the input and output parameters need to be considered as follows: 

(1) The lower limit of torque is determined according to the boundary of stable 

engine operation in dual fuel mode as 300 N·m, while the upper boundary is similar to 

that of diesel mode, which is the maximum torque corresponding to different speed, and 

the change of torque with speed is determined according to the external characteristic 

curve. 

(2) The maximum value of the SR is limited by the amount of primed diesel fuel, 

which must be greater than the maximum pre-injection amount to ensure the smooth 

operation of the engine, and the maximum pre-injection amount is determined to be 9 

(mg·cyc-1) after several tests. therefore, the boundary range of the SR is shown in Figure 

2, and the range of the remaining parameters is shown in Table 3. 

 

Figure 2. The range of substitution rate. 

Table 3. Input parameters and ranges. 

Speed MIT PIT PIQ RP EAC 

� �1r min��
 

(°CA) (°CA) � �-1mg cyc�
 

(MPa) _ 

800-1500 -2-6 50-70 2-6 60-100 1.4-1.9 

In order to obtain the experimental data required for modeling while avoiding the 

increased costs associated with extensive testing, this study relies on V-optimization and 

space-filling experimental design methods for the condition point design [16-18]. The 

main injection time is utilized as a local input whereas the other parameters are used as 

global inputs since it has the largest impact on engine characteristics. To ensure the 

model’s generalization capacity, the test points designed include 75 space-filling and 25 

V-optimized design supplementary points, totaling 100 test points, by referring to 

Reference [16]. A total of 500 test points were employed to collect data on the engine 
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test stand in accordance with the design operating conditions, together with the local 

inputs (MIT) [-2,0,2,4,6]. 

3. Performance Prediction Modeling Based on SVM 

3.1. Introduction of SVM 

Cortes and Vapnik first presented the Support Vector Machine (SVM) machine learning 

technique in 1995. It is based on the VC dimensional theory and the idea of structural 

risk reduction [19]. Vapnik created the insensitive loss function, whose fundamental 

concept is to locate the ideal classification hyperplane such that the error of all samples 

from that ideal classification plane is minimized, to solve the regression issue using 

support vector machines [20]. In order to address the nonlinear predictive regression 

issue, kernel functions are also utilized to translate nonlinear parameters to a feature 

space with high dimensions for linear regression. 

3.2. Predictive Modeling 

3.2.1. Parameter Normalization 

Since the actual input parameters are of different orders of magnitude, in order to avoid 

the parameters of small order of magnitude being overshadowed by those of large order 

of magnitude, the input and output parameters are first normalized to between [-1,1]. The 

following is the mathematical expression: 

� �min

max min

2
1

x x
x

x x
�

� � �
�

     (3) 

where: maxx  is the sample maximum; minx  is the sample minimum; x  is the normalized 

vector. 

3.2.2. Kernel Functions 

The prediction performance of support vector machine prediction models depends 

heavily on the penalty factor C and the choice of kernel function and its parameters. 

Because of its computational simplicity and strong prediction performance, the radial 

basis kernel function has been frequently employed in the research of engine 

performance prediction modeling. The radial basis kernel function is formulated as 

follows: 
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3.2.3. Evaluation Indicators 

The created performance prediction model’s predictive capacity was estimate using the 

statistical measurement determination coefficient R2, root mean square error (RMSE), 

and mean absolute error (MAE). 
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where n is the length of the prediction series, if  is value of the model prediction, iy  is 

measured value, and y  is the mean of predicted values. 

Structure of a SVM is shown in Figure 3. 

 

Figure 3. An SVM’s structural diagram. 

3.3. Prediction Results and Analysis 

In order to find the optimal penalty factor C and kernel function radius σ, three different 

self-searching optimization algorithms are compared separately. Grid Search (GS) is the 

quickest way to find the ideal radius width of the radial basis kernel function and the 

penalty parameter C for the SVM model, but finding these parameters over a wide range 

takes a lot of time. when using heuristic algorithms for the optimization search, there is 

no need to traverse all parameter points in the grid, making it possible to find the global 

optimal solution more quickly [21]. The parameters of the SVM model’s kernel function 

are improved using the GS method, PSO, and GA, respectively, to discover the best 

parameters and reduce computing time. 

The support vector machine prediction model was trained using eighty percent of 

the experimentally gathered data, with the remaining twenty percent (non-participating 

training) being utilized as the test set to assess the model’s predictive power. The effects 

of different search methods on the prediction accuracy of the 20% of data that did not 

participate in training are shown in Figure 4. It can be found out all three search methods 

can obtain good results, and the coefficients of determination R2 of NOx and BSFC in 

the test set are between 0.97 and 1, indicating that the parameters obtained from the 

search can construct a support vector machine with excellent prediction performance. 

Figure 5 compares the two methods, PSO and GA, in terms of how quickly they 

reach convergence. It is clear from the figure that the GA algorithm finds the optimal 
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fitness value after 30 iterations, while PSO requires 100 iterations. Therefore, with the 

above considerations, the GA algorithm is chosen for the optimization search in this 

paper. As for the GS method, it is not used in this study because of the contradiction 

between the grid division size and the computation time and accuracy, which increases 

the design complexity. 

  

Figure 4. Comparison of different 
search methods. 

Figure 5. Comparison of convergence speed. 

4. Preference-Driven Multi-objective Optimization 

4.1. Definition 

The priority that a DM accords to a certain area of the solution in the target space might 

be interpreted as preference. When the DM has some a priori knowledge and can directly 

give the importance of the goal (preference information), this type of preference is called 

deterministic preference. The preference relation reflects the DM’s degree of need or 

preference between goals that have differences [22].  

Interactive decision making, on the other hand, is a type of approach that adds 

preference information to the search process in an interactive manner. Since it is difficult 

for DMs without a priori knowledge to give precise preference information, the 

information carried by the solution set obtained by guiding the search with preference 

information is repeatedly fed back to the DM in the process of optimization through 

interaction, which guides the DM to continuously improve the preference information, 

so as to further guide the search of the algorithm and finally obtain a solution or solution 

set satisfactory to the DM. Concentrating the search of the algorithm in the preference 

region can effectively utilize the algorithm resources while reducing the computational 

complexity and improving the solution efficiency of the algorithm. 
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4.2. Multi-objective Optimization Algorithm Improvement

4.2.1. NSGA-II

The NSGA-II method not just implements an elite selection approach to prevent the 

eradication of the best people, but it also increases population diversity by allowing the 

genetic algorithm to search the whole solution space and discover the overall optimal 

solution. First, the two principles of non-dominated ranking and crowding distance 

calculation are used to evaluate the better individuals in each generation of the population; 

second, a fresh population of offspring is produced by mutation, crossover, and selection. 

Next, using the elite technique, the parent and offspring individuals of each generation 

are mixed, and the crowding distance and non-dominated ranking are calculated. Finally, 

the population is pruned according to the above two evaluation results, and this operation 

is performed indefinitely until the maximum number of iterations is achieved.

4.2.2. Preferred Information Introduction

� Basic Concepts

An optimization problem with numerous objective functions is referred to as a multi-

objective optimization problem. The minimization issue with m objectives and n choice 

variables is taken into consideration without losing generality. The following is its 

mathematical definition:

1 2
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where 
1 2( , , , )T

nx x x x� �X, )T
n, �, ), is an n-dimensional decision variable, X is a decision 

space, 
1 2( , , , )T

my y y y� �Y)m )Ty, �, ), is the goal to be optimized, and ( )il x and ( )jh x are 

the optimization problem’s constraints.

Lamjed Ben Said’s proposal for a new dominance relationship combines the 

reference point strategy with the Pareto dominance relationship [23]. It is a solution that 

upholds the Pareto-induced order and is nearer the DM’s frame of reference. The 

weighted Euclidean distance is used to determine if a solution in the solution set has 

reached convergence with the reference point [24].
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where x is a potential solution, g is DM’s reference point, and the i-th goal value’s upper 

and lower bounds are represented, respectively, by
max

if and 
min

if . wi is the i-th 

objective’s weight vector.

� Definition (The r-Dominance Relation): Any two solutions in the feasible 

region, x and y, must be satisfied x r-dominance y only when one of the two conditions 

stated below is true:

(a) In the Pareto notion, x dominates y;
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(b) Pareto does not dominate x and y, and  ( , , )D x y g �� � , where � �0,1� � , 

max min

( , ) ( , )
( , , )

Dist x g Dist y g
D x y g

Dist Dist
�

�
�

           (10) 

max
( , )z PDist Max Dist z g��     (11) 

min
( , )z PDist Min Dist z g��     (12) 

where, also known as the preference intensity value, δ is a setting that controls the size 

of the preference region.  P stands for the population as a whole, the population’s greatest 

and minimum distances from the reference point are denoted by Distmax and Distmin, 

respectively. 

4.3. Problem Description 

In order to solve the irreconcilable conflict between emission and fuel consumption of 

engines, this study takes NOx emission and fuel consumption rate BSFC as the 

optimization objectives. In the meantime, in order to satisfy the various requirements of 

various DM in response to various situations, the introduction of DM preference 

information guides the population’s evolution and search, causing the effective 

computation to take place in the region of greater concern to DM and speeding up the 

algorithm’s convergence to the preference region. Thus, the optimization results can 

directly meet the requirements of DMs. 

 � �1 2
min ( )= ( ), ( )

Tf fF x x x     (13) 

1
( ) NO ( )f x�x x      (14) 

2
( ) BSFC( )f �x x      (15) 

1 THC
( ) THC( ) 0.9Tg � �x x     (16) 

2 CO
( ) CO( ) 0.9Tg � �x x     (17) 

=(RP, MIT, PIT, PTQ, EAC, SRL)
T D�x                (18) 

where x is the decision vector made up of the control parameters, and Table 3 displays 

the range of values for each parameter. The emission regulation standard levels are 
THC

T

and 
CO

T ; 0.9 is the safety factor; D is the decision space. 

4.4. Optimization Results and Analysis 

The effect of preference decision driving on the optimization results is illustrated in Table 

4 for Case B as an example. 
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NO. A B C D E F G H 
Speed 800 900 1000 1100 1200 1300 1400 1500 

Torque 404 527 650 815 963 1128 1305 1510 

4.4.1. Influence of Reference Points on Optimization Results 

Figure 6 depicts the preferred Pareto-optimal solution set obtained by using three self-

selected reference points as guides for the search to direct the population search direction. 

The optimization strength δ is set to be 0.5 for all, the population size is 50, the 

evolutionary generation is 200, and the w=[0.5,0.5]. 

 

Figure 6. The effect of reference point selection on optimization outcomes. 

From the figure, it can be found that for different reference points selected, the 

search results find the optimal solution closest to the true Pareto front. Moreover, whether 

the reference points are located inside the feasible domain [(0.5,218), (8.5,211)] or 

outside the feasible domain (4,217), they do not affect the solution search. It can be seen 

that the reference point is able to direct the search of the population towards the desired 

region. 

4.4.2. Effect of Preference Strength on Results 

Figure 7 compares the effect of different preference strength (δ=[1,0.8,0.5,0.2]) values 

on the obtained Pareto front solution distribution. The same reference point R=(4,210) 

and w=[0.5,0.5], indicating that the DM has the same degree of preference for both 

objectives during the optimization process) are set in the experiment. When δ=1, the 

preference optimization algorithm obtains the entire Pareto frontier surface, indicating 

that the DM is interested in the entire set of frontier solutions at this time. As δ decreases, 

the range of the obtained solutions gradually decreases. Therefore, if the DM wants to 

obtain a larger range of the preferred solution set in the frontier solution set, he can 

choose a larger value of preference intensity, and vice versa. It can also be found that 

when the preference intensity value δ=1, the solution set is the same as the Pareto frontier 

solution set found by NSGA-II. The decrease of δ also indicates that the user is more 

interested in the pareto optimal solution close to the reference point, and it also helps the 

user to select the region of interest more directly without searching in the whole frontier 

plane. 

Table 4. Dual-fuel engine propulsion characteristics. 
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Figure 7. The impact of various preference strengths on the outcomes of optimization. 

4.4.3. Effect of the w on the Results 

The distribution of the optimization outcomes is examined in Figure 8 in relation to the 

weights of the weighted Euclidean distance. The values of the reference point and δ are 

set to (2.1,210) and 0.5 respectively. From the figure, it can be seen that changing the 

weight vector has an effect on the distribution of the preferred solutions. For the weight 

w=[0.5,0.5], the obtained preference solution lies in the middle of the entire Pareto front 

solution distribution. For the weight vector w=[0.8,0.2], the distribution of solutions 

shows that the optimization is carried out more focused on the objective 1f , i.e., the DM 

is more interested in reducing NOx emissions compared to BSFC. Similarly, for the 

weight vector w=[0.2,0.8], the DM wants to obtain a lower BSFC and thus needs to 

sacrifice some emission performance. 

 

Figure 8. The influence of different weight vector on optimization results. 

4.5. Experimental Test Results 

The preceding discussion has demonstrated that using a preferred multi-objective 

optimization method can provide the Pareto optimum solution while causing a change in 

the distribution area of the solution of interest. Here, three operating conditions 

representing low, medium, and high loads (operating conditions B, E, and H) of engine 

operation are chosen for the analysis. 

With low fuel consumption in area B, where NOx emissions exceed the maximum 

value (8.18 g(kWh)-1), as specified in IMO Tier-II, and NOx emissions meeting the IMO 
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Tier-III regulation in area A, Figure 9 depicts the distribution of solutions corresponding 

to the various preferences for the three operating conditions. The settings of the preferred 

parameters for each operating condition are determined in an interactive optimization 

process. The DM prefers low emissions for w=[0.8,0.2], while the opposite preference 

for low fuel consumption for w=[0.2,0.8]. δ=0.3 than δ=0.5 indicates that the DM expects 

a smaller range of solution distribution. 

 

Figure 9. Distribution of solutions for different preference situations. 

Preference optimization results for the full operating conditions are obtained by 

using an optimization process similar to the one described above. The solutions for each 

operating condition are randomly selected in regions A and B, and the MAP diagrams of 

all control parameters for the optimal solution are obtained using cubic polynomial 

interpolation. Figure 10 shows the MAP maps of the main injection timing for the two 

preferences. The MAPs of all control parameters were calibrated to the ECU for bench 

testing. The NOx emissions and BSFC are compared for the two preferred strategies. 

 

Figure 10. The main injection timing MAP corresponding to the two preferences. 

Figure 11a shows that the NOx fulfills the IMO Tier-III standard of 2.08 g (kW h)-1 

across the whole operating range at the chosen low emission, with an average value that 

is 1.22 g (kW h) 1, which is 78.9% lower than that of the original machine. Also in Figure 

11b, it can be seen that the BSFC at the preferred low emission has also improved. This 

indicates that the optimization results in a simultaneous reduction of emissions and fuel 

consumption. Figure 11b shows that the BSFC achieved while choosing low fuel 
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consumption is 3.68% lower than the BSFC obtained with low emissions and 8.44% 

lower than the original machine. However, the pursuit of lower fuel consumption comes 

at the cost of worsening emissions. 

  
(a) (b) 

Figure 11. The test results. 

5. Conclusion 

The SVM-based agent model used in this investigation, the test data show that the RMSE 

is less than 1.8 and the MAE is less than 1.5, indicating that the model has the ability to 

predict accurately and effectively. The effect of DM preference on the optimization 

outcomes is imaginatively taken into account together with the practical application 

requirements in the multi-objective optimization process. It is discussed how each 

preference parameter affects the distribution of the optimization outcomes. Any point in 

the feasible or infeasible domain, including the position of the reference point, reflects 

the ideal point envisaged by the DM. The DM’s interest in a certain optimization 

objective can be taken into account when adjusting the w of the Euclidean distance. The 

range of the solution distribution has an inverse relationship with the magnitude of the 

preference strength value. Without having to worry about the absence of a priori 

information, the aforementioned parameters may be set during the interactive 

optimization process. 

The optimization results under the two preference strategies are compared by an 

experimental bench. The preference for low emissions is to meet the specific 

requirements of emission regulations, and the preference for low fuel consumption is due 

to cost considerations. With an average NOx emission of 1.22 g (kWh) 1, which is 78.9% 

less than the original engine and significantly lower than the emission results obtained 

with preference for low fuel economy, the experimental results demonstrate that the 

solutions with a preference for low emissions all meet the IMO Tier-III requirements for 

NOx. There is no doubt that a preference for low BSFC leads to lower fuel consumption, 

and interestingly, in both states the BSFC is lower than the results obtained for the 

original engine. However, the higher fuel economy is obtained at the expense of 

damaging the environment. 
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