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Abstract. Simulation of linear elasticity problems is widely applied in mechanical 
and architectural engineering, and surrogate models driven by sample data have 
become an effective approach to perform fast simulation. However, due to the scarce 
and expensive data in engineering, traditional data-driven surrogate models suffer 
from low accuracy. This paper proposes a new Physics Informed Surrogate Model 
(PISM), with the objective to accelerate the numerical simulation of linear elasticity 
problems. The governing equations are incorporated into the training process of 
neural networks as effective supplement information to sample data, which 
improves the prediction accuracy of surrogate models in small data scenarios. A 
ResNet structure is introduced to further improve predicting performance of the 
model. Experimental results show that the prediction accuracy of PISM is 
significantly higher than that of pure data-driven surrogate models under small data 
conditions, and the solving speed reaches 8-9 times that of the finite element method. 
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1. Introduction 

The simulation of linear elasticity is to obtain the behavior of elastic objects under 

external forces, constraints, and other external factors. It is widely used in engineering 

fields such as mechanics, architecture, and materials [1-3]. The common approach is 

using numerical methods such as finite element methods to solve the control partial 

differential equations. However, during product optimization design, designers often 

need to continuously adjust the geometric parameters, and frequent numerical 

calculations will cause high time costs and computational expenses, arising the 

emergence of surrogate model methods. 

Surrogate models based on deep learning can mine the information contained in 

known data and construct high-fidelity models to accurately describe the input-output 

relationship, which has been widely applied in fields such as image recognition [4], 

natural language processing [5], and genomics [6]. However, the prediction accuracy of 

this method depends on a large amount of high-quality sample data. In the field of linear 

elasticity mechanics, data usually comes from expensive numerical simulations and 

experimental observations. Moreover, the pure data-driven approach results in models 

lacking interpretability, limiting the method's application and extension. Therefore, 
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training high-precision linear elasticity surrogate models under small data conditions has 

become a promising direction in engineering. 

In recent years, significant progress has been made in using deep learning to solve 

partial differential equations, providing a new approach to the aforementioned problems. 

Raissi et al. proposed Physics Informed Neural Networks (PINN) which embed the 

governing equations into deep neural networks through regularization term constructed 

by automatic differentiation [7], ensuring that the predicted results comply with objective 

physical laws without sample data. Since then, using physical informed deep learning to 

solve engineering problems has attracted a lot of attention. Karniadakis et al. successfully 

applied PINN to solving the Euler equation [8]. Beck et al. used deep learning to solve 

nonlinear stochastic partial differential equations and the Kolmogorov equation [9]. 

Similarly, PINN have also been applied to learning flow and transport in porous media 

[10], as well as multi-physics subsurface transport problems [11] and more. 

Although PINN have been widely used in various fields, existing studies have 

focused on using PINN to solve particular differential equations for specific solutions., 

meaning that each time a different problem is encountered the neural network needs to 

be retrained, incurring significant computational cost. This paper proposes a Physics 

Informed Surrogate Model (PISM), which combines the characteristics of PINN and 

surrogate model that driven by both small data and physical laws. Additionally, a ResNet 

architecture is introduced to further enhance the predicting performance of the model.  

This study addresses a more challenging problem of constructing an effective 

surrogate model for solving problems with geometric variations, which is applied to 

simulation of linear elasticity problems and significantly shortening the prediction time 

while ensuring satisfactory prediction accuracy. This method has the following 

advantages: 

1) Effectiveness with small data. By embedding physical laws in the model, PISM 

significantly improves the prediction accuracy of the surrogate model in small 

data scenarios. 

2) Fast simulation for geometry changes. When the geometric parameters of the 

simulated object change, the prediction speed of PISM is 8~9 times higher than 

that of the FEM, while ensuring satisfactory accuracy. 

2. Methods 

This section introduces the basic structure of deep neural networks and explains how the 

PINN architecture integrates the physical laws into the training process of neural 

networks. Then, the principle and architecture of PISM are presented, and finally ResNet 

and its application effects are introduced. 

2.1. Deep Neural Networks 

Deep Neural Networks (DNN) consist of input layer, hidden layer(s), and output layer. 

It can represent complex nonlinear mappings and extract feature information from data 

by learning the intrinsic rules of the sample data. 
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Figure 1. Deep Neural Networks 

The basic framework of feedforward deep neural network is shown in Figure 1, the 

weights of connections between �-th neurons on hidden layer �-1 and �-th neurons on 

hidden layer � is defined as l

jk . The input data 
1
x …

N
x  is propagated through the entire 

hidden layer to output 
1
y … 

M
y . The deviation of �-th neurons on hidden layer � can be 

expressed as l

jb . Besides, we define an activation function   on the output of the 

neuron as to introduce nonlinear to the neural network. Therefore, the final output of the 

�-th neurons on hidden layer � is: 
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A non-linear function �(�; �) is defined by a neural network, which depends on the 

input data � and parameters � = {�; 	}. By using optimization algorithms to train the 

hyperparameters �, the label data can be effectively approximated. 

2.2. Physics Informed Neural Networks 

The fundamental idea of physics-informed neural networks is to use automatic 

differentiation techniques [12] to incorporate partial differential equations into the loss 

function construction of neural networks, so as to approximate partial differential 

equations in the process of decreasing the loss function, and thereby make the training 

results of the neural network follow physical laws. 

Consider the general form of a partial differential equation: 
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Where u  is the solution of the above partial differential equation, ( , ) u  is a 

nonlinear operator with parameters,   is a subset of Euclidian space D
� , T is the 

termination time, ( )I x  is the initial condition of the equation, ( , )tB x  is the boundary 

condition of the equation. 

In PINN, the inputs of network are spatial and temporal variables, i.e.  x and t in 

the Cartesian coordinate system. We define ˆ( , ; )tu x   as the approximation of partial 
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differential equation u  by neural network, the Loss function of PINN can be defined by 

Mean Square Error (MSE): 

PDE bc ic
Loss Loss Loss Loss    (3) 
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Where 
PDE

Loss , 
bc

Loss and
ic

Loss are the partial differential equation residuals, 

boundary condition residuals and initial condition residuals in the loss function 

respectively.
r

N , 
b

N , 
i

N   are the number of sampling points corresponding to each 

loss function terms. Commonly used sampling methods include grid sampling method, 

Latin hypercube sampling, etc. The solution of the partial differential equation can be 

approximated by adjusting the weight parameters of neural network connections by using 

optimization algorithms such as gradient descent method. 

2.3. Physics Informed Surrogate Model 

The data-driven neural network surrogate model has been widely studied in aerodynamic 

design [13], topology optimization [14], etc. However, the effectiveness of this method 

has always relied on a large data set as premise, which is its limitation. It is the norm to 

lack sample data in the design process of complex products. Therefore, we propose a 

Physics Informed Surrogate Model (PISM) that embeds physical laws in the neural 

network to build surrogate model which is suitable for small data conditions. Compared 

with the sufficient data required by traditional surrogate model, the proposed method 

trains the neural network with a small amount of data and physical laws, as shown in 

Figure 2. 

             
a)                                                                                 b) 

Figure 2. The difference between traditional surrogate model and physics informed surrogate model.  

a) traditional surrogate model; b) physics informed surrogate model 
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The training of PISM is shown in Figure 3. Based on the data-driven neural network, 

the model's output is constrained by partial differential equation constraints through 

automatic differentiation. During training, the neural network's output at the data point 

is constrained to be consistent with the sample data by the Lossdata term in the loss 

function. The boundary condition term Lossbc, initial condition term Lossic, and PDE term 

LossPDE in the loss function constrain the areas where data is sparse to follow the physical 

laws. After the training is completed, predicting of PISM is to perform a forward 

propagation calculation through the neural network model saved in the training stage, no 

need for any neural network parameter training. 

 

Figure 3. Training process of physics informed surrogate model. 

2.4. ResNet structure 

Deep neural networks extract feature information from data by adding more hidden 

layers. However, as the number of hidden layers increases, the network's fitting 

performance first increases and then decreases, a phenomenon known as degradation 

[15]. The reason is that neural networks find it difficult to fit the identity mapping, and 

therefore, the network's performance decreases after the optimal number of hidden layers 

is exceeded. Residual networks, or ResNet, are neural networks that incorporate skip 

connections to ensure the network's ability to learn identity mappings and facilitate 

information flow in both forward and backward directions. ResNet effectively addresses 

the problems of gradient vanishing and degradation, and have been widely applied in 

various research fields [16-17]. 

 

Figure 4. ResNet structure. 
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The structure of the ResNet is shown in Figure 4. Consider a deep neural network 

with two hidden layers, where 
 l
y  is the output of layer l, W is the weight of the layer, 

and b is the bias of the layer,   representing the activation function. Then the output of 

layer l+2 can be derived as: 
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Residual networks introduce skip connections on top of the computation process 

described above. After the input vector has been processed by layer l+1, it is added to 

itself and then fed into the activation function of layer l+2, thus creating an identity 

mapping in the neural network. This is represented by: 

     2 2

( + )
l l l

y a y
 

  (8) 

Table 1 presents the numerical values of the loss function that the two kinds of 

networks converged to when used for surrogate modeling of two-dimensional linear 

elasticity cases. The case setting will be detailed in Section 3. The hyperparameters of 

both networks were set the same, and 10 experiments were conducted for each network, 

with the average value taken. From the table, it can be observed that using residual 

networks resulted in a reduction of about 18% in the training error, indicating that the 

application of residual networks in this study can significantly improve the predictive 

accuracy of the model. 

Table 1. Prediction accuracy comparison between ResNet and deep neural network 

 ResNet DNN 

Loss 0.002070 0.002524 

3. Experiment 

This section demonstrates the experimental results of applying PISM to problems in 1.1. 

linear elasticity. The governing equations of the problem were introduced, followed by 

a description of the experimental setup. Defected plate with an inner hole, a classic 

example for observing stress concentration issues in linear elasticity, was used for the 

experiment. Finally, the results were analyzed and quantified. 

3.1. Linear elasticity 

Consider a small deformation of a two-dimensional elastic object that is homogeneous 

and isotropic. The governing equations of linear elasticity are as follows: 

   +  = 0  Fσ  (9) 
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2
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 =  : Cσ ε  (11) 

Within the scope of statics, the external loads and constraints on the object do not 

vary with time, so it is only subject to boundary conditions and not initial conditions. 

The boundary conditions of the linear elasticity partial differential equations are divided 

into Dirichlet boundary conditions and Neumann boundary conditions, which are 

expressed as follows: 

0
u ,

u
 u  x  (12) 

0
,  

s
  σ  n p x  (13) 

In the above equations,  is the gradient operator, F is the body force vector, σ  is 

the strain tensor, u and are the displacement and stress tensors, respectively, and C is the 

constitutive tensor. n is the unit normal vector on the surface, p0 is the load at the 

boundary, 
u

  and 
s

 represent Dirichlet boundary and Neumann boundary, 

respectively. 

3.2. Experiment setup 

The experimental case is two-dimensional defected plate problem, as shown in Figure 5. 

The plate size is 1.0m*1.0m, fixed on the left side, and subjected to a uniform load px 

along the x-axis direction at the right end, with a magnitude of 1.0MPa. The material 

properties of the plate are Young's modulus E=20MPa and Poisson's ratio  =0.3. There 

is an inner hole at the center of the plate, whose geometric parameters can be adjusted as 

a design variable in this case. We construct a surrogate model based on the variation of 

geometric parameters of the circular hole to achieve fast prediction of displacement and 

stress under load for different geometric parameters. Experiment 1 keeps the inner hole 

circular, i.e., the design variable is the radius R of the circular hole; Experiment 2 has an 

elliptical inner hole, with the length of its major axis A as the design variable. 

                 
    a)                                                                             b) 

Figure 5. Experiment setup. a) Experiment 1: Plate with circular hole; b) Experiment 2:Plate with elliptical 
hole. 
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For Experiment 1, it is assumed that there are existing simulation data for three 

locations with R values of 0.1m, 0.15m, and 0.2m. For Experiment 2, it is assumed that 

there are existing simulation data for three locations with A values of 0.2m, 0.3m, and 

0.4m, to simulate a small data scenario. All simulation data used in the experiments are 

obtained by ANSYS Workbench software using finite element method. Table 2 shows 

the training and testing datasets for this experiment. 

Table 2. Training datasets and testing datasets for Experiment 1/2 

 Training dataset (small data) Testing dataset 

Experiment 1 R=0.1m R=0.15m R=0.2m R=0.12m R=0.17m 

Experiment 2 A=0.2m A=0.3m A=0.4m A=0.24m A=0.36m 

The neural network is structured with 15 hidden layers, with 80 neurons in each 

hidden layer, and uses tanh function as the activation function. The L-BFGS-B optimizer 

is used to train the neural network for 20,000 iterations, and the parameters {W, b} of 

the neural network model are saved after reaching the maximum iteration or the loss 

function no longer decreases. 

3.3. Results 

3.3.1. Experiment 1: Plate with circular hole 

The trained PISM is used to predict the displacement and stress of the plate under 

different radius R. Values of R=0.12 and R=0.17 are chosen to examine the prediction 

accuracy of the proposed method. Figures 6 and 7 respectively show the simulation 

results for x-direction displacement u and x-direction stress 
x

  at R=0.12 and R=0.17. 

The finite element solutions are obtained by the ANSYS Workbench software. The 

training set of the purely data-driven surrogate model remains the same as the three sets 

of data in Table 2 to ensure the objectivity of the comparative experiment. The network 

structure, iteration times, activation function, and other parameter settings are consistent 

with PISM (all subsequent experiments are kept the same). 

3.3.2. Experiment 2: Plate with elliptical hole 

The trained PISM is used to predict the displacement and stress of the elliptical hole plate 

under different major axis lengths A. Figures 8 and 9 respectively show the simulation 

results for x-direction displacement u and x-direction stress 
x

  at A=0.24 and A=0.36. 

3.4. Analysis of results 

Figure 10 shows the curve of the loss function with respect to the number of iterations 

after initialization of the neural network parameters using 20 Xavier initialization 

methods, using Experiment 1 as an example. It can be seen that from different initial 

parameters, the loss function can converge after about 10,000 iterations. 
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Figure 6. The prediction of u and 
x

 when R=0.12. a) and d) are FEM solutions serving as the reference 

solutions; b) and e) are prediction of the purely data-driven surrogate model; c) and f) are the prediction of 
PISM. 

 

Figure 7. The prediction of u and 
x

 when R=0.17. a) and d) are FEM solutions serving as the reference 

solutions; b) and e) are the prediction of purely data-driven surrogate model; c) and f) are the prediction of 
PISM. 
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Figure 8. The prediction of u and 
x

 when A=0.24. a) and d) are FEM solutions serving as the reference 

solutions; b) and e) are the prediction of purely data-driven surrogate model; c) and f) are the prediction of 
PISM. 

 

Figure 9. The prediction of u and 
x

 when A=0.36. a) and d) are FEM solutions serving as the reference 

solutions; b) and e) are the prediction of purely data-driven surrogate model; c) and f) are the prediction of 
PISM. 
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Figure 10. Curve of the loss function with respect to the number of iterations after 20 initializations. 

From the observation of the experimental results shown in the above figures, it can be 

seen that the data-driven surrogate model cannot accurately simulate the displacement 

and stress fields due to the sparse data, but only predict their general trends. In contrast, 

the PISM can capture the details such as stress concentration more accurately, and has 

higher prediction accuracy. To further verify the accuracy of the proposed method, the 

L2 relative error is calculated between the solutions of PISM, purely data-driven 

surrogate model and the finite element method. The formula for calculating the L2 

relative error is as follows: 
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( ) ( )
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N

i ref i

i
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
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where ( )
i

u x  is the predicted physical quantity using the surrogate model, ( )
ref i

u x  

represents the reference solution value at that point, and N is the number of coordinate 

points in the entire solution domain. 

Table 3 and Table 4 show the L2 errors and computational time of the two surrogate 

models compared to the reference solution in Experiment 1 and Experiment 2, 

respectively. Additionally, FEM in both experiments has 28,000~30,000 calculation 

nodes (varies according to geometry), and the purely data-driven surrogate model and 

PISM will use exactly the same points as the FEM nodes as sampling points, ensuring 

the fairness of the experiment. It can be seen from the tables that prediction accuracy of 

PISM is significantly improved compared to the purely data-driven surrogate model. At 

the same time, under the same computer hardware conditions (Intel Core i7-9750H CPU, 

RAM16GB), the prediction time of the three methods is statistically calculated, and the 

time consumption in the table is the average prediction time under different geometric 

parameters. The results show that the FEM is relatively slow because it requires a large 

number of numerical calculations. The computational time of the PISM and the data-

driven surrogate model is very close since the two models have the same network 

hyperparameters, and reaching 8-9 times that of FEM. 
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Table 3. Experiment 1: Comparison of the relative error and prediction time consumption of the two methods 

Methods 
L2 / % 

Time/s 
u (R=0.12) x

 (R=0.12) u (R=0.17) x
  (R=0.17) 

FEM - - - - 1.844 

purely 
data-driven 

9.07 9.13 15.66 18.41 0.182 

PISM 0.47 1.99 0.40 2.19 0.190 

Table 4. Experiment 2: Comparison of the relative error and prediction time consumption of the two methods 

Methods 
L2 / % 

Time/s 
u (A=0.24) x

 (A=0.24) u (A=0.36) x
  (A=0.36) 

FEM - - - - 1.782 

purely 
data-driven 

10.83 8.09 16.74 21.61 0.212 

PISM 4.29 3.08 2.77 3.51 0.199 

4. Conclusion 

This paper proposes Physics Informed Surrogate Model (PISM) for fast simulation in 

linear elasticity problems. PISM improves the accuracy of the surrogate model by 

incorporating the partial differential equation into the training process of the neural 

network as an effective supplement when the amount of sample data is small. A ResNet 

structure is introduced to alleviate the degradation problem of deep neural networks. The 

PISM is tested using 2D plates with circular and elliptical holes as examples and the 

convergence of the proposed method is verified. The results show that the accuracy of 

PISM predictions is significantly better than that of purely data-driven surrogate models 

under small data scenarios. The proposed method enables fast prediction of geometric 

parameter changes while ensuring high accuracy, effectively reducing the simulation 

time of linear elasticity. It is of significant value for fast simulation of design options in 

the optimization design process. 
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