
 A FPGA Embedded DSP Supporting

Parallel Multiple Low Bit-Width Multiply-

 MiaoWang a, Zhihong Huang b, 1 , Gang Cai b, Junxuan Wang a
a

 School of Communications and Information Engineering
Xi'an University of Posts and Telecommunications

Xi'an 710121, China
 bAerospace Information Research Institute, Chinese Academy of Sciences

Ehiway Microelectronic Science and Technology Co.Ltd.
Beijing 100094, China

Abstract. With the continuous development of big data and hardware computing

platforms, deep learning has been substantially applied in many intelligent scenarios.

Recent studies have shown that using low bit-width networks in deep learning
inference can effectively improve the overall performance of accelerator by

reducing the computational ability requirements while maintaining the recognition

accuracy of accelerator. Among them, low bit-width convolutional operations such
as 8bit and 4bit are widely used in applications such as graph recognition. FPGA

chip is the core key device of digital system, due to the excellent reconfigurability

of FPGA, it has become one of the mainstream platforms in the field of deep learning
accelerator. The current mainstream FPGAs are composed of higher bit-width

multipliers due to the need to adapt to different computing application requirements,

and the DSP module resources are used to perform low bit-width convolutional
operations, which only occupy part of the multiplier bit-width, thus wasting a large

amount of hardware on chip resources. Therefore, this paper proposes a DSP

architecture of using large bit-width multipliers to compute low bit-width
multiplications in parallel, so that the new DSP can realize double 8bit and 4bit

multiply-accumulate operations without adding multipliers, and can support any

combination of signed and unsigned data operations. The design is based on the
commercial Stratix IV DSP architecture, and the overall circuit is designed with

SMIC 14nm standard CMOS process. The experimental results show that when

calculating the same number of 4-bit and 8-bit multiply-accumulate operations, the
resource consumption area of the improved DSP is reduced by 43.5% and the speed

is increased by 48%.

Keywords. Deep learning, FPGA, DSP, Low bit-width, Multiply-accumulation

1. Introduction

In recent years, artificial intelligence has developed rapidly, and deep learning

algorithms have shown more advantages than traditional algorithms in many fields such

as natural language processing, target detection, image classification and speech

recognition, but their large amount of data and computation also put pressure on current

1 Corresponding Author: Zhihong Huang, huangzhihong@mail.ie.ac.cn

Accumulate Operations

Industrial Engineering and Applications
L.-C. Tang (Ed.)
© 2023 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/ATDE230112

835

hardware computing platforms[1]-[2]. The mainstream CNN models in deep learning

algorithms even contain millions of parameters, and their computation consumes a large

amount of hardware resources. Studies have shown that in some scenarios, the use of

low-precision network models can achieve the goal of significantly improving

accelerator performance and reducing memory usage while meeting accuracy

requirements[3].

The current mainstream accelerated computing platforms include CPUs, GPUs,

ASICs, and FPGAs. Among them, FPGAs have dynamic reconfigurable features and the

hardware logic resources can be programmed to adapt to different layers of deep learning

algorithms, thus becoming a widely used accelerated computing platform[4]. The

parallelism of FPGAs for accelerated computing is usually related to the number of

embedded DSPs. The embedded DSP modules in commercial FPGAs usually consist of

fixed high bit-width multipliers. The DSP module realizes large bit-width multiplication

or multiply-accumulate operations through cascade. While for lower bit-width

convolution operations, the low utilization of multiplier bit-width makes the DSP not

efficient in achieving low bit-width multiply-accumulate operations[5]-[6].

To solve this problem, this paper proposes a method of using a large bit-width

multiplier to compute low bit-width multiplications in parallel, custom-designing the

multipliers of the DSP so that the DSP can achieve double the number of multiply-

accumulate operations in one cycle without increasing the number of multipliers, thus

significantly improving the performance of FPGAs supporting low bit-width data

convolution operations.

The rest of this paper is organized as follows. Section II describes the design

implementation of the customized multiplier. The specific architecture of the DSP and

the implementation of the multiply-accumulate function are given in Section III. Section

IV compares the experimental results. Section V summarizes the full paper.

2. Customized Multiplier Design

The customized multiplier in this design is 18 bits wide and can be configured into

different functional modes by control signals. The customized multiplier can implement

one set of 18-bit multiplication operations, two sets of 8-bit multiplication operations and

two sets of 4-bit multiplication operations, supporting any combination of signed and

unsigned numbers

2.1. Customized Multiplier Architecture Design

Fig.1 shows the structure of the customized multiplier, including the following parts: the

data pre-processing block, which is used to reorganize the multiplicand and split the

multiplicand into two sets of data, multiplicand1 and multiplicand2; the partial product

generation block is used to Booth encode the multiplier and generate partial product with

the output data of the data pre-processing block; the correction block is used to correct

the partial product in the double 8bit multiplication mode, so that the partial product

array can meet the requirements of two sets of 8bit multiplication operations; the data

mux, used to select the partial product array of the multiplier in different modes; the

compressor tree reduction block, which is used to compress the partial product array and

get the final operation result.

M. Wang et al. / A FPGA Embedded DSP836

 PARTIAL PRODUCT
GENERATION BLOCK

MULTIPLIER MULTIPLICAND

RESULT

DATA MUX

 CORRECTION
BLOCK

COMPRESSOR TREE
REDUCTION BLOCK

DATA PRE-
PROCESSING

BLOCK

Figure 1. Structure diagram of customized multiplier

In the normal multiplication operation, the data is input normally; in the double

multiplication operation, the input data of the multiplier is spliced in the way shown in

Fig.2 The left Fig.2 shows the data input format of double 4bit multiplier, in which a and

c represent the multiplicands of 4bit, and b and d represent the multipliers of two sets of

sign bit expansion to 6bit; the right Fig.2 shows the data input format of double 8bit

multiplier, in which a and c represent the multiplicands of two sets of 8bit, and b and d

represent the multipliers of two sets of 8bit.

Figure 2. Double multiplication mode data input format

2.2. Data Pre-processing Block Circuit Design

Since the customized multiplier can calculate any combination of signed and unsigned

numbers of 18bit data, the actual data involved in the operation is 19bit×18bit. In order

to make the multiplier support two sets of 4bit and 8bit multiplication operations, this

design preprocesses multiplicand by the data pre-processing block and splits

multiplicand into multiplicand1 and multiplicand2. For the normal multiplication

operation, the symbolic control signal Signa and the highest bit of data are logically

combined to obtain the data symbolic bits according to the circuit in Fig.3.a, and the data

symbolic bits are spliced with multiplicand to obtain multiplicand1 and multiplicand2.

For the double multiplication operation, the symbolic control signal signa is logically

combined with the highest bit of the two sets of data to obtain the symbolic bit of the

data, and the two sets of data are spliced with the symbolic bit and then the symbolic bit

is expanded to 19 bits to generate multiplicand1 and multiplicand2 according to the

circuit in Fig.3.b. When X=4, the multiplier performs a double 4-bit multiplication

operation; when X=8, the multiplier performs a double 8-bit multiplication operation.

When X=4, the multiplier performs double 4-bit multiplication; when X=8, the multiplier

performs double 8-bit multiplication.

M. Wang et al. / A FPGA Embedded DSP 837

Figure 3. Data pre-processing block circuit

2.3. Partial Product Generation Block Optimization Design

This design uses Booth radix-4 encoding for the multiplier[7], as shown in Equation 1,

and groups the multipliers in such a way that every three digits are used as a group and

every two groups overlap by one, which will eventually produce 10 groups of partial

products.

� � � �

1 2 3 1 0

1 2 3 1 0

2 1

1 2 3 2 1 0

y 2 2 2 2 2

2 2 2 2

n n n
n n n

n
n n n

y y y y y
y y y y y y

� � �
� � �

�
� � �

� � � � � � � � � � � �

� � � � � � � � � � �

11

1

122 1

��1 �1 �2 �122 ��
(1)

Table 1 shows the encoding method of Booth radix-4 encoding, where X represents

the multiplicand, Y represents the multiplier, NEG, X1, X2P, ZP represents the control

signal, and ��� represents the partial product, which can be obtained by the action of the

control signal and the multiplier. When the ADD signal is 1, the coding value is negative.

In the table, ����� ��� ����� respectively represents the three consecutive digits of the

multiplier, and the possible values include {000, 001, 010, 011, 100, 101, 110, 111} 8

cases, corresponding to a total of 5 coding methods, respectively {-2X, -X, 0, X, 2X},

where X is the value of the multiplicand, 2X means to shift the multiplicand to the left

by one bit, - X means to reverse and add one to the multiplicand, and - 2X means to

reverse and add one to the multiplicand after moving the multiplicand to the left by one

bit. Because only - X and - 2X need to add 1, which requires a 20-bit adder, and will

introduce a large delay, so when the coding value is negative, add a bit 1 to the lowest

bit of the partial product, and the compressor tree reduction block will uniformly sum it.

Table 1. Booth radix-4 encoding table

	
��� 	
� 	
��� NEG X1 X2P ZP ADD �

0 0 0 0 0 1 1 0 0
0 0 1 0 1 0 1 0 X

0 1 0 0 1 0 0 0 X
0 1 1 0 0 1 0 0 2X

1 0 0 1 0 1 0 1 -2X

1 0 1 1 1 0 0 1 -X
1 1 0 1 1 0 1 1 -X

1 1 1 1 0 1 1 0 0

M. Wang et al. / A FPGA Embedded DSP838

The expressions of each control signal can be obtained according to the truth table,

and in order to reduce the energy consumption generated by burrs in the circuit, the

encoding method used in this design synchronizes all paths in the encoder and partial

product generator to ensure that the control signals have the same generation delay[8].

The specific encoding circuit is shown in Fig.4.

y2i+1

y2i-1

y2i

X1

X2P

ZP

NEG

xj

xj-1

PPi

y2i-1

y2i

y2i+1 ADD

Figure 4. Booth radix-4 encoding circuit

In the partial product generation block, multiplier[9:0] is encoded with the encoding

grouping as {��� �� ��},{�� �� ��},{�� �� ��},{�� �� ��},{�� �� ��}, which acts with

multiplicand1 to generate the partial products r0-r4, encoding multiplier[17:9], encoding

grouping as {��� ��� ��},{��� ��� ���},{��� ��� ���},{��� ��� ���},{��� ��� ���}, with

multiplicand2 acts to generate partial products r5-r9. The three multiplication modes of

the multiplier multiplex the partial product generation circuit, and the partial product

array is shown in Fig.5. Since the highest data valid bit multiplier[17] can only produce

three combinations of {000}, {001} and {111}, when multiplier is performing Booth

radix-4 encoding, the lower 18 bits of r9 are taken as the valid value of the partial product.

Figure 5. Partial product generation array diagram

The partial products generated by the Booth radix-4 encoding algorithm are signed

numbers, and the highest bit represents the sign bit. Therefore, when summing the partial

products, it is usually necessary to expand the sign bit of the partial products of each line,

and then perform the compressed summation. This operation requires additional circuit

resources. In this paper, the sign bit calculation is optimized by the method of pre-

summing the sign bit [9]. Formula 2 accumulates and sums all the sign bits and simplifies

them. The result of the simplification is to inverse the sign bits of the product of each

part, and then add them with the constant data.
35 35 35 35

0 1 6 7

19 21 31 33

7
19 2 19 20 22 24 26 28 30 32 34 35

0

sign 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

n n n n

n n n n

i
l

i

s s s s

s

� � � �

�

�

� � � � �

� � � � � � � � � � � �

� � � �

�

66�66

(2)

M. Wang et al. / A FPGA Embedded DSP 839

After the operation, there is no need to expand the symbolic bits in the later

calculation, only the highest bit of each partial product needs to be inverted and a new

row is added, i.e., there are 10 partial products originally, and now there are 11 partial

products. The new row is r10 = {1101010101010101010110} with a bit width of 18 bits,

and the new partial product array is shown in Fig.6.

Figure 6. New partial product array diagram

2.4. Partial Product Correction Circuit

When the customized multiplier performs a double 8bit multiplication operation, the bit

width of multiplier cannot meet the shared use of two sets of 8bit multipliers, so it is

necessary to correct the value of r4. The correction processing circuit is shown in Fig7.

When the multiplier D is an unsigned number and the highest bit is 1, sel1 selects

Mutiplicand1[19:0] as the value of r4, and in other cases selects 20 'b0 as the value of r4.

Multiplicand1[19:0]

20'b0
r4

D
A

TA
 M

U
X

Figure 7. Partial product correction circuit

2.5. The Compressor Tree Reduction Block

As shown in Fig.8 to Fig.10, the compression tree unit compresses the partial product

array with a total of four compression stages: stage1, stage2, stage3 and stage4 [10].

Among them, stage1 are compressed by means of 3-2 compressors; stage2 are

compressed by means of a combination of 3-2 compressors and 4-2 compressors; stage3

are compressed by means of a combination of 3-2 compressors, 4-2 compressors and 5-

2 compressors, and stage4 are implemented by using an adder.

When the customized multiplier is in double 4bit multiplication mode, as shown in

Fig.7, the orange part is the partial product array of two sets of 4bit operations c × d and

a × b, and after stage1, the two sets of summation and carry value are spliced to the high

9 bits and low 9 bits of the data in stage4 of the fourth compression stage, and finally the

result of two sets of 4bit multiplication operations is obtained. When the customized

multiplier is in double 8bit multiplication mode, as shown in Figure 8, the blue part is

the partial product array of two 8bit operations c × d and a × b, and after stage1 and

stage2, the two sets of summation and carry value are spliced to the high 17 bits and low

17 bits of stage4 data, and finally two sets of 8bit multiplication results are obtained;

when the customized multiplier is in normal multiplication mode, as shown in Figure 9,

M. Wang et al. / A FPGA Embedded DSP840

the black part is a set of partial product array of 18bit operation a × b, and after stage1,

stage2, stage3 and stage4, a set of 18bit multiplication operation results are obtained.

The operation of stage4 is actually implemented in the form of a 36-bit adder. Since

the design is a combinational circuit, the core of the chosen adder is the pursuit of adder

speed, and after comparing the performance of various adders, the Koggle_Stone tree

adder is chosen to achieve the final summation [11], The final customized multiplier

output result can be a set of normal multiplier results or two sets of low bit width

multiplication operation results.

Figure 8. 4bit multiplication partial product processing flow

Figure 9. 8bit multiplication partial product processing flow

M. Wang et al. / A FPGA Embedded DSP 841

Figure 10. 18bit multiplication partial product processing flow

In
pu

t R
eg

is
te

r
ba

nk

Fi
rs

t S
ta

ge
 A

dd
er

Fi
rs

t S
ta

ge
 A

dd
er

A
dd

er
 O

ut
pu

t R
eg

is
te

r

A
dd

er
/A

cc
um

ul
at

or

C
ha

in
ou

t A
dd

er

O
ut

pu
t R

eg
is

te
r

Ba
nk

result[71:0]

chainout

scanina chainin

dataa_0[17:0]

datab_0[17:0]
dataa_1[17:0]

datab_1[17:0]
dataa_2[17:0]

datab_2[17:0]

dataa_3[17:0]

datab_3[17:0]

scanina

Figure 11. Architecture diagram of DSP module

3. DSP Module Architecture Design

The design is implemented with reference to Altera Stratix IV DSP and optimized to

output the multiply-accumulate operation results of up to 8 operands in one beat and up

M. Wang et al. / A FPGA Embedded DSP842

to 16 operands in two beats, thus achieving the purpose of multiplexing the multiplier

resources, and the computational efficiency is twice as before.

3.1. DSP Module Composition

Fig.11 shows the block diagram of the DSP module proposed in this paper, which

consists of: the input register bank for pre-processing the input data to be computed in

order to choose whether to store it or not; the multiplication unit, including four groups

of customized multipliers for performing ordinary multiplication and double low bit

width multiplication; two first-stage adders for adding the results of the multiplier unit

separately; the adder output register is used to store the operation results obtained from

the summation process; the adder/accumulator is used to perform the secondary addition

operation or the accumulation operation; the chain adder is used to perform the chain

addition operation; and the output register is used to store the final operation results.

3.2. DSP Module Multiply-accumulate Function Introduction

In the normal multiply-accumulate mode, the customized multiplier is configured to

function as a normal multiplier and the operands are input normally. The DSP in this

mode can implement single multiplier multiply-accumulate, two multiplier multiply-

accumulate, three multiplier multiply-accumulate, and four multiplier multiply-

accumulate operations. The output data of the multiplication operation unit is added by

the first adder and the second adder respectively to obtain the sum of two multiplication

additions, and then sent to the accumulator module to perform the addition operation

with the output data of the previous cycle to obtain the value of 18bit multiply-

accumulate operation. The result of the accumulator operation can be selected whether

to continue the chain addition operation or not, and finally the result is output directly or

after registering.

In the double multiply-accumulate mode, the customized multipliers are configured

as double multiply function. 8 sets of data a1 × b1, c1 × d1, a2 × b2, c2 × d2, a3 × b3, c3

× d3, a4 × b4, c4 × d4 are spliced to the DSP module input port according to the rules.

After multiplication operation unit calculation, 8 sets of multiplication operation results

are obtained. Since the two sets of operation results of each customized multiplier output

are separated by protection bits, thus the data can directly enter the first stage adder and

the second stage adder for addition calculation, and the two outputs obtained contain the

sum of four sets of multiplications. The two outputs and the sum are split into four data,

and the accumulator module performs the addition operation with the output data of the

previous cycle to obtain eight sets of 4bit or 8bit multiply-accumulate values.

4. Comparison of Experimental Results

In order to compare with the existing Stratix-IV DSP IP core on the same platform and

process, this paper completes its DSP IP design using the same design methodology and

flow, called Altera DSP, based on the existing Stratix-IV datasheet and the corresponding

design documentation [12]-[13]. A whole DSP contains two identical DSP architecture,

which is completed by the common multiplier design. Next, the common multiplier is

replaced by the customized multiplier and the improved DSP is called enhanced DSP.

The study was performed with standard SMIC 14nm CMOS process and the logic

M. Wang et al. / A FPGA Embedded DSP 843

synthesis of both designs are finished by Synopsys DC tool to obtain area and timing

information respectively. The maximum frequency of the DSP module was obtained by

adjusting the clock period to detect timing violations.

Table 2 shows a comparison of the Altera Stratix IV DSP, the Altera DSP, and the

enhanced DSP module proposed in this paper, which supports double multiply-

accumulate operations. Among them, the Altera DSP has the smallest critical path delay

and area with a frequency of up to 800 MHZ and an area of 18272.1����, which is

mainly caused by the use of more advanced process nodes, while the enhanced DSP has

a 3.9% performance degradation due to the enhancement of the customized multiplier

double multiplication operation function, compared to the Altera DSP, and the area is

increased by 13.0%.

Table 2. Comparison of different DSP block logic synthesis results

� Stratix-IV DSP Altera DSP Enhanced DSP
Process Technology SMIC 40nm SMIC 14nm SMIC 14nm

Area/ ��� No data 18272.1 20645.2

Maximum Frequency/MHZ 550 800 769.2

Critical path delay/ns 1.82 1.25 1.30

Table 3 shows the comparison of the improved functions of the two DSP blocks.

Due to the improvement of the parallelism of the low bit width operation of the

customized multiplier, the enhanced DSP can support 16 sets of multiplication, 16 sets

of multiply-addition and 16 sets of multiply-accumulation for 4 bit. For 8bit operation,

due to the bit width limitation of the DSP block output port, it can support up to 9 sets of

multiplication, 16 sets of multiply-addition and 16 sets of multiply-accumulation. In

addition, enhanced DSP can also support all functions of Altera DSP.

Table 3. Comparison of DSP block functions

DSP
Block

4bit
Multiplic

ation

8bit
Multiplic

ation

4bit
Multiply-
Addition

8bit
Multiply-
Addition

4bit
Multiply-

Accumulation

4bit
Multiply-

Accumulation
Altera

DSP
8 8 8 8 8 8

Enhanced
DSP

16 9 16 16 16 16

Considering the computing requirements of low precision networks in deep learning,

this paper mainly focuses on the improvement of DSP's performance in low bit wide

multiply-accumulate operation. Table 4 shows the comparison between the occupied

area and the calculation time when using both DSPs to perform the 4bit and 8bit

multiplication related operations. When performing the same number of 4bit

multiplication, 4bit and 8bit multiply-addition, multiply-accumulate operations, the total

on-chip resource occupation area of the enhanced DSP is reduced by 43.5% and the speed

is increased by 48% compared with the Altera DSP. When performing the same number

of 8bit multiplication operations, the area loss will be 0.43%, however the time

performance will also be increased by 8.4%.

Table 4. Comparison of different DSP blocks for different bit-width multiply-accumulate operations

Realization Of
Different Arithmetic

Cases
DSP Area

/��

Area
Change

Rate

Time
Required

/ns

Time
Change Rate

16 sets of 4bit

multiplication

Altera DSP 36544.2
-43.5%

2.5
-48%

Enhanced DSP 20645.2 1.3

Altera DSP 36544.2 -43.5% 2.5 -48%

M. Wang et al. / A FPGA Embedded DSP844

16 sets of 4bit multiply-

addition
Enhanced DSP 20645.2 1.3

16 sets of 4bit multiply-
accumulation

Altera DSP 36544.2
-43.5%

2.5
-48%

Enhanced DSP 20645.2 1.3

16 sets of 8bit

multiplication

Altera DSP 36544.2
-43.5%

2.5
-48%

Enhanced DSP 20645.2 1.3

72 sets of 8bit multiply-

addition

Altera DSP 164448.9
0.43%

11.35
-8.4%

Enhanced DSP 165161.6 10.4

16 sets of 8bit multiply-
accumulation

Altera DSP 36544.2
-43.5%

2.5
-48%

Enhanced DSP 20645.2 1.3

5. Conclusion

In this paper, we propose a method of using a large bit-width multiplier to implement

low bit-width multiplication in parallel, , custom-design the multiplier to replace the

traditional multiplication module, design an improved DSP module architecture, and

experimentally compare the performance with the traditional DSP. Compared with the

original structure, the enhanced DSP can reduce the resource usage area by 43.5% and

increase the speed by 48% when calculating the same number of 4bit and 8bit multiply-

accumulate operations with low bit-width convolution. The improved DSP makes the

FPGA more adaptable to the computational requirements of low-precision networks in

deep learning.

References

[1] Wang, K. F. , and X. H. Huang . "Research of Image Recognition of Plant Diseases and Pests Based on
Deep Learning." International Journal of Cognitive Informatics and Natural Intelligence (IJCINI)
15(2021).

[2] Canziani, A. , A. Paszke , and E. Culurciello . "An Analysis of Deep Neural Network Models for
Practical Applications.", 10.48550/arXiv.1605.07678. 2016.

[3] Boutros, S. Yazdanshenas and V. Betz, "Embracing Diversity: Enhanced DSP Blocks for Low-Precision
Deep Learning on FPGAs," 2018 28th International Conference on Field Programmable Logic and
Applications (FPL), Dublin, Ireland, 2018, pp. 35-357, doi: 10.1109/FPL.2018.00014.

[4] Skliarova, I. . "A Survey of Network-Based Hardware Accelerators." (2022).

[5] Sommer, J. , et al. "DSP-Packing: Squeezing Low-precision Arithmetic into FPGA DSP Blocks." (2022).

[6] Rasoulinezhad, Seyed Ramin , et al. "PIR-DSP: An FPGA DSP Block Architecture for Multi-precision
Deep Neural Networks." 2019 IEEE 27th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM) IEEE, 2019.

[7] Sma, B , and B. Dja . "An Optimistic Design of 16-Tap FIR Filter with Radix-4 Booth Multiplier Using
Improved Booth Recoding Algorithm - ScienceDirect." Microprocessors and Microsystems (2020).

[8] Fried, R. . "Algorithms for Power Consumption Reduction and Speed Enhancement in High-Performance
Parallel Multipliers." Patmos (2000).

[9] Annaratone S. Digital CMOS circuit design[M]. Springer Science & Business Media, 2012.

[10] Rao, M Jagadeshwar , and S. Dubey . "A high speed and area efficient Booth recoded Wallace tree
multiplier for fast arithmetic circuits." Microelectronics & Electronics IEEE, 2012:220-223.

[11] Knowles S. A family of adders[C]//Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat.
No. 99CB36336). IEEE, 1999: 30-34.

[12] Stratix III D H. Vol. 1[J]. Chapter, 2007, 6: 6-1.

[13] Stratix V. Device handbook, volume 1: Device interfaces and integration[J]. Altera, June, 2012

M. Wang et al. / A FPGA Embedded DSP 845

