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Abstract. B-coloring is a theoretical optimization problem on a graph that, on top
of being used to model some real-world applications, is exploited by some bound-
ing techniques embedded into solvers for the classical graph coloring problem. This
implies that improved solutions for the b-coloring problem have an impact on an
even larger pool of practical applications modelled by graph coloring in several
different fields such as scheduling, timetabling and telecommunications.

The b-coloring problem aims to maximize the number of colors used to provide
a complete coloring for a graph G= (V,E), while preventing adjacent vertices from
receiving the same color. Moreover, each color used is associated to a so-called a
b-vertex. A vertex can be a b-vertex only if the set of colors assigned to its adjacent
vertices includes all the colors used, apart from the one assigned to the vertex itself.

In this work we discuss a new Constraint Programming model for the b-coloring
problem and we show how such a paradigm can improve state-of-the-art results for
several benchmarks instances commonly adopted in the literature.
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1. Introduction

In the last decades, Operations Research and Optimization have been providing planning
tools capable of improving our everyday life in virtually all contexts. At the basis of
such tools there are mathematical models able to describe real-life problems in abstract
terms, on which it is possible to apply more formal reasonings. In this paper we focus the
b-coloring problem, that can be formally described below. Several real applications of
b-coloring to real-world contexts, both direct and indirect, exist. We direct the interested
reader to [1] for further details.

Given an undirected graph G = (V,E), a b-coloring with K colors is a function that
assigns a color c(i) ∈C = {1,2, . . . ,K} to each vertex i of V , so that c(i) �= c( j) for every
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Figure 1. Example of a graph with an associated optimal b-coloring with 4 colors. The b-vertices are the two
on the top row and the two in the middle row.

(i, j) ∈ E. Let N(i) = { j|(i, j) ∈ E} be the neighborhood of i. For each k ∈C there must
be a vertex i ∈ V with c(i) = k and with N(i)∩{ j ∈ V |c( j) = h} �= /0 ∀h ∈ C\{k}. In
other words, for each color k used, a vertex assigned to color k (called b-vertex) must
exist such that for every other color used h, there is at least one of its neighbors assigned
to h. The optimization targer is to find a b-coloring using the maximum possible number
of colors. The b-chromatic number of a graph G is defined as the maximum number of
colors for which G admits a b-coloring, and is normally indicated as Xb(G).

An example of an optimal b-coloring for a given graph is provided in Figure 1.

2. Literature Review

The b-coloring problem is NP-hard, since it is proven in [2] that providing an estimation
for Xb(G) NP-hard itself. Some theoretical properties of the problem are also known: the
difference between the optimal solution values of the classical coloring problem ([3])
and b-coloring for the same graph G can be arbitrarily large [4]; the girth (length of a
shortest cycle) of the graph can influence the b-coloring problem heavily [5]; Given a
value for which a b-coloring exists for a graph G and the b-chromatic number Xb(G), a
b-coloring with k colors does not necessarily exist for all the possible values of k ranging
within such an interval, instead gaps might exist [6].

Algorithmic contributions to the b-coloring problem can be classified as follows.
In [7] a hybrid evolutionary algorithm is discussed, while a method for the calculation
of the b-chromatic index Xb(G) based on an integer linear programming formulation is
introduced in [8]. Later on, the same model is used within a branch and cut algorithm
[9]. An advanced mixed integer linear programming model is presented in [10], where
some matheuristic approaches [11] are also derived. The latter paper also contributed the
testbed commonly adopted for the b-coloring problem, which is composed of instances
originally proposed for other graph problems in [12]. A further matheuristic method,
based on an iterative schema, is discussed in [13]. Finally, improvements on both lower
and upper bounds generated by integer programming models are documented in [1].
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Concerning applications of b-coloring to real-world problems, in [14] and [15] a
postal mail sorting systems based on b-coloring is introduced to model a new approach
for address block localization, with the aim is of assisting the software for address recog-
nition. A clustering technique using some b-coloring concepts is used by the French
healthcare system to identify and formalize a new typology of hospital stays, as presented
in [16]. Finally, as discussed in [17], the b-coloring problem can provide viable bounds
for the classical coloring problem. Note that due to this, enhancement in the methods to
solve b-coloring may lead in turns to benefits for several important practical applications
such as scheduling [18], timetabling [19] and telecommunications [20].

The rest of the paper is organized as follows. In Section 3 a Constraint Programming
model for b-coloring is discussed. Section 4 presents comprehensive computational re-
sults related to the performance of the model while solved by state-of-the-art solvers.
The instances traditionally used in the b-coloring literature were considered. Section 5
finally contains some conclusions. Note that the approach presented in this paper is an
extension of that discussed in the Master thesis [21].

3. A Constraint Programming model

In this section a Constraint Programming model for the b-coloring problem, baed on the
idea of the Integer Programming model originally proposed in [10], is discussed. The
rationale behind the use of Constraint Programming [22] is that such paradigm appears
to be well-suited for problems that can be described by Boolean variables. Moreover,
recent advances in solvers, make Constraint Programming an efficient tool, thanks to the
high scalability on moderns computers characterized by multi-core architectures.

In the model we present there is a set of boolean variables x such that xi j = 1 (or
equivalently True) if vertex j is colored with the color of the representative vertex i, 0 (or
equivalently False) otherwise. With such a notation, a vertex i is a b-vertex (sometimes
referred to as a representative) if and only if xii = 1. Let N̄(i) = V \ {{i}∪N(i)} be the
anti-neighborhood of i.

max ∑
i∈V

xii (1)

∑
j/∈N(i)

x ji = 1 ∀i ∈V (2)

¬xii =⇒
∧

j∈N̄(i)

¬xi j ∀i ∈V (3)

¬xi j ∨¬xik i ∈V ; j,k ∈ N̄(i);( j,k) ∈ E (4)

xii ∧ x j j =⇒
∨

k∈N( j)
k∈N̄(i)

xik ∀i, j ∈V ;(i, j) /∈ E (5)

xi j ∈ {0,1} i, j ∈V (6)

The objective function (1) maximizes the number of b-vertices selected. Constraints
(2) ensure that every vertex is assigned exactly one color (observe that, by definition, j
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can take value i in the summation). Constraints (3) states that a vertex can give its color
only when it is a representative (note the ose of the logical operator AND). Constraints
(4) guarantees a proper coloring, by imposing that two adjacent nodes must be assigned
different colors. Note the ose of the logical operator OR, and that these constraints works
in conjunction with the previous ones to guarantee proper b-coloring. Constraints (5)
formalize the proper b-coloring restrictions. They imply that if both vertices i and j are
b-vertices, then there must be at least a neighbor of j which is represented by color i. The
domain definition for the variables is provided by constraints (6).

4. Experimental results

The model described in Section 3 will be tested from an empirical viewpoint, to under-
stand its potential.

4.1. Datasets and Settings

The instances considered in this work are those commonly adopted in the literature to
validate b-coloring approaches have been originally proposed in [10]. They are based
on the DIMACS benchmark set originally proposed for the minimum coloring and the
maximum clique problems in [12]. Being the approach we discuss a model-based one,
and given the performance of the solver currently available, it is not likely that instances
with more than 500 vertices will be handled effectively. Therefore, the instances of the
dataset with more than 500 vertices are left out of the present study. Moreover, all the
instances for which an optimal solution has been proven in previous studies are left out
as well, in consideration of our objective, which is the improvement of state-of-the-art
results. This leaves us with a total of 72 instances: 29 of which originally proposed for the
graph coloring problem [3] and 43 originally proposed for the maximum clique problem
[23].

The Constraint Programming model discussed in Section 3 has been implemented
in Python and solved with the CP-SAT solver from Google OR-tools 9.5.2237 [24] with
default settings. All the experiment reported in this section has been carried out on the
processors of a cluster, each equipped with an x86 Intel Xeon Platinum 8276 processor
with 24 cores running at 2.4 GHz. For each instance, one run with a maximum computa-
tion time of 24 hours is consider, Once the allowed time is reached, the run is interrupted
and the best lower and upper bounds are saved. Note that the powerful hardware and
the longer computation time give to the approach a clear advantage over the methods
previously appeared in the literature. However, we do not expect the previous methods
to be able to fully take advantage of such experimental conditions, due to substantially
limited scalability of the Linear Programming solvers on which they are based. The files
containing the solutions retrieved are available upon request to the authors.

4.2. Results and Discussion

The results obtained by solving the Constraint Programming model of Section 3 are
reported in Tables 1 and 2, divided by origin of the instances composing the benchmark
set. The columns of the tables contain the following information:
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Table 1. Results for the relevant coloring instances from [12].

Instance Best Known CP Model
Name |V | |E| LB UB LB UB

dsjc125.5 125 3891 45 63 39 72

dsjc125.9 125 6961 68 72 68 73

DSJC250.1 250 3218 24 33 24 137

DSJC250.5 250 31336 57 126 63 155

DSJC250.9 250 55794 128 150 129 158

DSJC500.1 500 12458 38 59 38 308

DSJC500.5 500 62624 88 251 106 392

DSJC500.9 500 112437 249 443 245 339

DSJR500.1c 500 242550 150 221 156 162

DSJR500.5 500 58862 221 234 - 329

flat300 20 0 300 21375 61 144 69 199

flat300 26 0 300 21633 64 146 68 210

flat300 28 0 300 21696 57 146 69 202

le450 15a 450 8168 40 57 39 275

le450 15b 450 8169 40 56 34 281

le450 15c 450 16680 54 93 51 277

le450 15d 450 16750 54 92 52 277

le450 25a 450 8260 54 63 - 253

le450 25b 450 8263 52 60 47 261

le450 25c 450 17343 59 101 53 275

le450 25d 450 17425 60 99 57 277

le450 5a 450 5714 28 34 24 282

le450 5b 450 5734 28 34 24 280

le450 5c 450 9803 35 52 35 282

le450 5d 450 9757 36 52 34 286

R250.1c 250 30227 86 89 86 86

R250.5 250 14849 116 119 107 151

school1 385 19095 70 117 70 219

school1 nsh 352 14612 59 101 61 195

• Instance contains three subcolumns reporting the name, the number of vertices
and the number of edges of each instance considered;

• Best Known reports for each instance the best known lower bound (heuristic so-
lution cost) and upper bound. The results summarise the achievement of the pre-
vious relevant literature [1], [10] and [13];

• CP Model reports for each instance the lower and upper bounds retrieved by solv-
ing he Constraint Programming model described in Section 3, according to the
descriptions provided in Section 4.1.

Entries in italics in the tables denote suboptimal bounds for the Constraint Programming
model-based method, while bold entries indicate improved best-known bounds. Entries
with a dash mean that no feasible solution has been retrieved in the given time. The new
heuristic solutions are available upon request to the authors.
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The results of Table 1 suggest that the Constraint Programming model is fairly ef-
fective in providing good heuristic solutions (LBs), and in fact 8 new best-known results
emerged (over 29 instances). Note that suboptimal results are always close to best-known
results. Different is the situation concerning the upper bounds: in several cases the new
solver provides estimations that lie very far from best-known results, notwithstanding 3
improved results are retrieved, and one of them also led to proven optimality for one in-
stance (R250.1c). The poor upper bounds suggest difficulties for the new model to fully
capture the characteristics of the problem on these graph coloring instances.

The results of Table 2 are on maximum clique instances, and denote a much better
behaviour of the Constraint Programming model we propose with respect to what seen
for the coloring instances of Table 1. In details, 34 lower bounds are improved (over 43
instances), together with 8 upper bounds. Note that in some cases emarkable improve-
ments in lower bounds are achieved. The new model is still denoting difficulties on the
upper bound side, but the many improved heuristic solutions provided indicate that the
new method can be used as a very viable method for generating high quality solutions,
notwithstanding being based on a general solver.

Upon the undoubted success of the present results, future research will try to under-
stand and explain why the new model performs better on the second set of instances. This
might depend on weaknesses of the new approach, or by the fact that previous methods
were tailored towards the first set of instances, and therefore performing better on them.
A further question that should be addressed by future research, while looking for reme-
dies, is why some of the upper bounds provided by Constraint Programming are so far
from the best known ones.

5. Conclusion

This paper described a Constraint Programming model for the b-coloring problem, a
problem on graphs arising in optimization and used to describe in mathematical terms
several real applications and is used, in turns, as a bounding technique for the traditional
graph coloring problem.

The experimental results presented to validate the new model produced several im-
provements for the benchmarks commonly adopted in the literature. On top of the the-
oretical results, there are potential implications for solution methods of the many real-
world applications that can be modelled as b-coloring or traditional graph-coloring.

Future research will try to address the limitations on the quality of some upper
bounds provided by Constraint Programming on some of the instances. A possible strat-
egy could be to consider modifications to the basic model as done recently for Integer
Programming models of the problem, or to integrate on a more tailored fashion Con-
straint Programming and Integer Programming.
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Table 2. Results for the relevant maximum clique instances from [12].

Instance Best Known CP Model
Name |V | |E| LB UB LB UB

brock200 1 200 14834 76 127 77 128

brock200 2 200 9876 48 100 51 123

brock200 3 200 12048 60 120 62 125

brock200 4 200 13089 66 124 68 130

brock400 1 400 59723 123 254 135 306

brock400 2 400 59786 121 254 134 291

brock400 3 400 59681 123 254 134 293

brock400 4 400 59765 125 254 135 294

C125.9 125 6963 68 71 69 73

C250.9 250 27984 127 152 129 158

C500.9 500 112332 250 327 246 345

gen200 p0.9 44 200 17910 104 118 105 122

gen200 p0.9 55 200 17910 105 119 105 122

gen400 p0.9 55 400 71820 200 261 201 262

gen400 p0.9 65 400 71820 200 262 201 261

gen400 p0.9 75 400 71820 200 262 201 262
hamming6-4 64 704 15 22 16 23

hamming8-2 256 31616 144 160 143 159

hamming8-4 256 20864 56 144 66 153

johnson8-4-4 70 1855 28 35 28 36

johnson16-2-4 120 5460 38 46 38 51

johnson32-2-4 496 107880 42 262 158 305

keller4 171 9435 52 101 55 98

p hat300-1 300 10933 48 91 48 181

p hat300-2 300 21928 85 149 93 187

p hat300-3 300 33390 117 190 123 198

p hat500-1 500 31569 72 152 75 321

p hat500-2 500 62946 127 252 134 376

p hat500-3 500 93800 152 351 193 366

san200 0.7 1 200 13930 82 124 85 116

san200 0.7 2 200 13930 60 115 65 98

san200 0.9 1 200 17910 105 111 105 110

san200 0.9 2 200 17910 106 119 106 119
san200 0.9 3 200 17910 104 119 105 121

san400 0.5 1 400 39900 41 204 61 232

san400 0.7 1 400 55860 113 253 143 246

san400 0.7 2 400 55860 108 251 132 251
san400 0.7 3 400 55860 82 248 117 265

san400 0.9 1 400 71820 203 259 205 257

sanr200 0.7 200 13868 68 125 73 130

sanr200 0.9 200 17863 104 119 105 123

sanr400 0.5 400 39984 80 201 87 292

sanr400 0.7 400 55869 106 251 128 302
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