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Abstract. With the rapid development of 5G networks, the emerging 5G mobile 

system is expected to serve a large number of users with differentiated performance 

requirements. Different application scenarios have differentiated resource and 
quality of service requirements. To optimize the allocation of network 

multidimensional resources, an allocation algorithm to maximize multi-dimensional 

resource utilization is proposed for the resource optimization problem of Enhanced 
Mobile Broadband (eMBB) and Ultra-Reliable and Low Latency Communication 

(URLLC) network slices. The algorithm combines communication, computing and 

storage resources to provide a solution for multi-dimensional resource allocation. 
And it is able to guarantee the high speed demand of users in eMBB slices and the 

low latency demand of users in URLLC slices. The resource problem for 

multiservice slicing is modelled as a non-linear mixed integer programming 
problem. Combining the augmented Lagrange algorithm and the branch-and-bound 

method to solve the problem, the optimal resource allocation strategy is obtained. It 

is demonstrated that the proposed algorithm can improve the system throughput, 
increase the resource utilization, improve the rate of eMBB class services and reduce 

the delay of URLLC class services compared with other algorithms. 
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1. Introduction 

With the development of 5G technology and the introduction of network slicing 

technology, the resources to be managed by 5G networks are no longer limited to 

traditional communication resources such as power and spectrum, but are gradually 

evolving to pre-distribution for multi-dimensional resource management, which includes 

caches, computing resources, etc. Typical application scenarios include three categories, 

namely Enhanced Mobile Broadband (eMBB), Ultra-Reliable and Low Latency 

Communication (URLLC) and massive machine type communication (MMTC). In 

addition, as the allocation of resources across dimensions can interact with each other, 

optimizing a resource in isolation does not give the best results for the user. Therefore, 

it is essential to combine multi-dimensional resources for dynamic allocation. 

To accommodate the multi-service requirements of the current 5G verticals, 

network slicing techniques are introduced. Splitting a physical network into multiple 

logical networks based on different needs is more adaptable to current developments. 

There have been many achievements in previous research on network slicing. Currently, 

network slicing is one of the most cost-effective ways to meet the varying demands of 
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multi-logical network services and is a key driver for the flexibility and versatility of 5G 

to deliver a variety of service approaches [1]. In the literature [2], the authors investigate 

how network slicing and fog nodes can be combined to securely access remote service 

data while ensuring low latency. A network orchestration architecture for dynamic 

network slicing is considered in literature [3] and demonstrates how to provide dynamic 

network slicing to enterprise services. The above literatures only consider the traditional 

communication resources, don’t consider the optimization of multi-dimensional 

resources for resource allocation. In view of this situation, in multi-user networks, a 

multi-dimensional resource management scheme is proposed in the literature [4], The 

scheme minimizes user latency by jointly optimizing communication and computing 

resources, and derives an expression for optimal resource allocation. To meet the demand 

for low-latency communication In the literature [5], the authors assume that offloading 

users are known and propose a combined bidding-based service provider selection 

scheme to allocate spectrum and computing resources to users to improve the 

effectiveness of service providers. However, the impact of storage resources on system 

resource allocation is not considered in the above-mentioned literature for multi-

dimensional resource allocation schemes, and adding consideration of storage resources 

can optimize the system resource allocation scheme. 

In this paper, the resource optimization of eMBB and URLLC network slices is 

studied, and an allocation algorithm to maximize multi-dimensional resource utilization 

is proposed. Different from the previous resource allocation schemes, it is the 

consideration of adding storage resources. A multi-dimensional resource allocation 

scheme for joint communication, computing and storage resources is proposed. So as to 

improve the overall system resource utilization and rate, and to reduce the service 

response latency. The resource problem of multiservice slicing is modelled as a non-

linear mixed integer programming problem. Linear programming is then used to solve 

the overall resource allocation problem. 

2. System Model and Problem Description 

2.1. System Model 

In this paper, an end-to-end network slicing model for 5G networks is considered. The 

users U = {1,2...U} are randomly distributed in the coverage area of the base station. The 

total bandwidth of the system is equally divided into N sub-bandwidths B, whose 

corresponding sub-carrier set is���= {1,2...., N}. The user set in the eMBB slice is set to �� , ���� | = �� , and the user set in the URLLC slice is set to �� , ���� | = �� , where 

U=��U��,  ��∩���= ø. When building a system model, the system model incorporates 

three major capabilities within the network: communication, computation and storage.  

� Network model 

Consider a network topology g = {v, e}, where v denotes the set of network nodes. 

Nodes can be routers, users or servers. e denotes the links between physical network 

nodes. M = {	
�	�� 
} denotes the set of some nodes in the model with service 

capabilities. Where 	
 � V denotes nodes in the model with caching capabilities and  	� � V denotes nodes in the model with computing capabilities. A source server is 

represented by a source node o which satisfies all service requests in the network.  

S = {�
, ��} denotes the set of service requests from users, s  S denotes the  

J. Zhao et al. / Multi-Dimensional Resource Allocation Algorithm346



services requested by users, ��  �
 denotes the content services requested by users, 

and ��  �� denotes the computation services requested by users. 

 

Figure 1. Network slicing model. 

� Computation and Storage Model 

In the compute and store model, ���  is a binary variable to represent the 

compute/cache policy on network node m. For user u, ��� �= 1 if network node m can 

satisfy the user's service request; conversely ��� �= 0. Here, it is assumed that the service 

node has a limited service capacity within the network. ���  is applied to denote the size 

of the cache capacity of network node m and ���  is applied to denote the computational 

capacity of network node m. Based on the above expression, the total amount of all 

content stored on a network node must be less than the maximum capacity it can cache. 

����� 
� ��� ��� �� � 	
������������������������������������������������������������  
Moreover, the sum of the computational tasks of the network nodes must be less 

than the maximum amount of computation that their computational resources can 

provide. 

����� 
� ��� ��� �� � 	������������������������������������������������������������  
For the source server o, it is assumed that there is no upper limit on its capacity. So, 

for all service requests from user’s s, � �= 1. 

2.2. Problem Description 

For end-to-end network slicing, this paper applies network slicing techniques to solve 

the problem of having two types of services eMBB and URLLC requirements.  

Slice 1: eMBB (throughput priority) 

When user u in slice 1 sends a service request, the corresponding rate is given by 

the following equation. 

!" # $%��"&
�'� !��" ( )* + � �����������������������������������������������,� 

%��" �-�������.//012�/345.66076�8�9:�3/76�;�<� :9=76/���������������������������������������� ����������������������������>� 
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!��" # ? @:1 A� B C��"D�E*? F�� �����������������������������������������������������G� 
!��H is the data rate of user u subcarrier n. E* is the noise power spectral density. C��" and D� denote the channel gain and transmit power of the associated subcarrier n of 

user u, respectively. )* is the throughput requirement threshold of user u. 

Slice 2: URLLC (Latency Priority) 

For users with low latency requirements, the packet length of each user follows an 

exponential distribution, assuming that the maximum data arrival rate of the users in this 

slice obeys a Poisson distribution. The probability of disruption for user u in slice 2 with 

a delay greater than the delay threshold is given by the following equation. IJ�KL" �( �L"���MN # � OP�QRP�SR�TUV�WR�TUV�� + � ��������������������X� 
where L" and L"���M are the latency of user u and the maximum latency threshold 

that user u can tolerate, respectively. Y"���M  is the maximum data arrival rate for user u. 

In addition, this paper assumes that the maximum transmit power of the base station is I*. Combining the above two slicing constraints, the system throughput. 

Z #$ $ %��"�?&
�'�

[
"'� @:1�� B C��"D�E*? ���������������������������������\� 

With the objective of maximizing system throughput, the original problem is 

transformed into a mathematical model solved as follows: 

�.]^_`��`�Ra$ $ %��"�?&
�'�

[
"'� @:1�� B C��"D�E*? ���������������������������b� 

�c dc����$ %��"!��"&
�'� ( )*� + � ������������������������������������������������������ 
IJ�KL" �( �L"���MN � e�� + � ������������������������������������������ 
$$%��"&

�'�
[

"'� D� # I*�����D� � �Zf��������������������������������������,� 
$$%��"&

�'�
[

"'� # E�����%��" � ^<��a��������������������������������������>� 
$%��"&
�'� � �� g � �&����������������������������������������������������������G� 
��� 
� ��� � ��� ��� � 	
�������������������������������������������������X� ������ 
� ��� � ��� ��� � 	����������������������������������������������\� 

where, (11) is intended to maximize the throughput of the system; (c1) is to ensure 

that the transmission rate received by user u does not fall below the minimum rate 

demand threshold; and (c2) ensures that the probability of interruption of user u in slice 

2 with a delay greater than the maximum delay que is less than the threshold e. For (c3), 

(c4) and (c5), assuming that all users make full use of the subcarrier and power resources, 

each subcarrier at most one user is associated. (c6) and (c7) indicate the 

caching/computing resource capacity limits of service nodes within the network, 

respectively. 
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3. Allocation Algorithm to Maximize Multi-dimensional Resource Utilization 

Solve the multidimensional resource allocation problem of the whole system network 

based on the above optimal service response strategy. Since the original problem (11) is 

a difficult NP-hard problem to solve. In this paper, an approximate method is used to 

solve this problem by combining the branch-and-bound method. Relaxing the variable E" and expanding its range of values: E"  A, Where A= {E" Zf| � E" # E"�[ }, 

the relaxed optimization problem can be obtained as follows: 

�02^_R�&Ra h$E"i@:1�� B j"D"E" �[
"'� ���������������������������������������������������k� 

)* h ?E"@:1�� B j"D"E" � � <� + � ����������������������������������������������� OP�QRPSR�WRcTUV h e � <�� + � ���������������������������������������������� � D"["'� h I* # <�����D" � �Zf���������������������������������������������,�  
                                ���������
� ��� � ��� ��2 � E
����������������������������������������������������>� ������
� ��� � ��� ��2 � E����������������������������������������������������G� ��E" � �l����������������������������������������������������������������������������X� 

where N is the number of subcarriers allocated to user u;Z" # E"i@:1�� B mR_R&R �; j" is 

the channel gain-to-noise ratio (CNR) of user u. D" is the transmission power of user u; 

(c3) is to make full use of the wireless resources. (c4) and (c5) indicate the 

caching/computing resource capacity limits of service nodes within the network, 

respectively. 

The augmented Lagrange algorithm is utilized to solve the optimization problem 

(18). First, the inequality constraint is relaxed by introducing the subsidiary variables nH 

and jH  so that (c1) and (c2) are expressed in terms of the equation. Then, the augmented 

Lagrange function op can be obtained. as follows: op�D� g� q� r� s� t� # 

h ZE? B ��u $ ��02^<� u�Z" h )*� h q"a��"�[v
 

B ��u $ ��02�^<� u�e h IJ^L" ( L"c��Ma� h q"a��"�[w
B s�I* h$D"[

"'� � 
Bu�x$DH[

"'� h I*y
� B t xE h$E"[

"'� y B u� x$E"[
"'� h Ey� B u� x$E"[

"'� h Ey� ����<� 
where p = [I�, I�,…, I"z, n = [E�, E�,…, E"z, α = [{�, {�,…, {"vz, r�= [r�, r�,…, r"wz. q", r", μ and λ are Lagrange multipliers; ρ is the penalty factor. 

To aid in the description of the algorithm, the following functions are defined in this 

paper: |�D"� E"� # ?E" @:1 A� B j"D"E" F h )*������������������������������� C�D"� E"� # e h OP�QRPSR�WRcTUV���������������������������������������� 
��D� # $D"[

"'� h I*�����������������������������������������������������,� 
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�}�g� # $E"[
"'� h E������������������������������������������������������>� 

In addition, the gradient of the equation function and the inequality function are 

used in the PHR augmented Lagrange algorithm, denoted respectively as: ~1�D"� E"� # � �C�D" � �C�E"z� + � �����������������������������������������G� 
~��D"� E"� # � �|�D" � �|�E"z� + � ������������������������������������������X� 
��~=�D� # � ���D� � ���D� � � � ���D"�����������������������������������������\� ~�}�g� # � ��}�E� � ��

}�E� � � � ��}�E"������������������������������������������b� �|�D" # ?E"j"�E" B j"D"� @2 ����������������������������������������������������k� �|�E" # ? @:1 A� B j"D"E" F h ?j"D"�E" B j"D"� @2 �����������������<� 
The problem being relaxed will be solved by the Augmented Lagrange Algorithm, 

as shown in Algorithm 1. 

 

Algorithm 1 Relaxed Optimization Problem 

 Initializingq� r� s� t� u � <� � # <� � � �<���� ���M # ��G<<� ��c �S # �< � � ��� ��� � �<��zc 
  While �� � � and � � ���M  do 

The BFGS algorithms is used to solve the extended Lagrange function to obtain ��,  
where �� # ^D"� � E"� �+ # ���� � � �ac �� # �, where ω is shown in (21). �|���� � ��9=72 

   �|�� ( ����.2���� �� ����� �S��9=72 

ρ=ηρ 

end �| ��������������q" # �%n^<� q" h u��D"� E"�a� + � ��� ��������������r" # �%n^<� r" h u1�D"� E"�a� + � �� ��������������s # s h u A$ hI*[
"'� F� 

��������������t # t h u A$ E" h E[
"'� F� 

end �| 

 �������� # � B �� n* # n� 
end while 

J. Zhao et al. / Multi-Dimensional Resource Allocation Algorithm350



� # �x$D"[
"'� h I*y

� B x$E"[
"'� h Ey� B $ ��02 A��D"� E"�� q"u F��"�[v

�
B $ ��02 A1�D"� E"�� r"u F�

�
"�[w

�
�� ������������������������������������������������������������ 

For the optimal subcarrier and power allocation strategies, Algorithm 2 and the 

branch delimitation method are used in this chapter to obtain them. The integer constraint 

in the relaxed mixed integer programming problem is solved by Algorithm 2 for each 

relaxation problem. In Algorithm 2 power and joint subcarrier allocation is used. A 

combination of branch-and-bound methods is used to iterate until the resulting integer 

solution satisfies the iteration conditions. As a result, the optimal resource allocation 

strategy and spectral efficiency are obtained. 

 

Algorithm 2 Power association subcarrier allocation algorithm 

Through Algorithm 2, the nonlinear programming problem in which the variable N 

is relaxed in the optimization problem (9) is solved to obtain a lower bound L for (8) and 

initialize the resource allocation policy E"�� D"�  

while ||h - l|≤ε do �| E"�  Z then 

break 

else the problem's upper bound is found. The number of subcarriers E� Z and the 

power I� , i = 1, 2, …, K are initialized. The feasible solution is determined and h is 

obtained as an upper bound for the optimization problem (9). 

end if 

By the branch-and-bound method, the optimization problem (9) is branched into the 

problem 	�  with E" � �E"�z  and the problem 	�  with E" ( �E"�z B � . ���  E"���� D"��� 
and ��� E"���� D"��� are obtained by combining Algorithm 2. 

 �| ���, i=1,2, �E"  Z then 

h = min {��,h } or h = min {��, ��,h} �| �� < h then 

l = max {��, ��,h}, E"�= E"�  
end �| 

end �| 

s =h 

end while 

Output: D"� , E"� , s 

4. Simulation and Result Analysis 

The method in this paper is validated by simulation on matlab. The simulation parameters 

are shown in Table 1. 
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Table 1. Simulation parameters 

Parameters name                                         value 

System bandwidth                                     10MHz 

maximum latency threshold L��M             0.008 s 

System power P                                         40W 

Minimum interruption probability ε          0.01 

Iteration threshold ���M                              500 

Path loss factor β                                       2.5 

Number of subcarriers N                           20 

Power spectral density of noise E*           -174dBm/Hz 

Minimum rate threshold )*                      1 3 5Mbps 

 

Through a series of experiments, the performance of the allocation algorithm to 

maximize multi-dimensional resource utilization proposed in this study is verified.  

Figure.2. shows the curve of the relationship between average slicing rates and the 

number of users. The simulation results show that the average slicing rate achieved by 

all three algorithms tends to increase as the number of users increases. The greedy 

 

Figure 2. Relationship between average slicing rates and the number of users. 

algorithm maintains essentially the same rate as the algorithm proposed in this paper 

when the number of users is small. However, as the total number of users continues to 

increase, the proposed algorithm takes into account the effect of caching resources and 

routing on the rate, and the rate tends to increase better than the greedy algorithm. The 

resource allocation algorithm proposed in this study can achieve a better system service 

rate. The performance is obviously better than other algorithms. 

Figure.3. illustrates the end-to-end delay versus the number of users in the slice. 

The simulation results show that the algorithm proposed in this paper can maintain a 

smaller end-to-end delay compared to the greedy algorithm. The simulation results show 

that the proposed algorithm can reduce the end-to-end delay more effectively than the 

greedy algorithm and the proximity allocation algorithm. The greedy algorithm obtains 

the maximum number of underlying physics resources from the guaranteed slices, but 

does not consider the processing delay and link transmission delay of each node, which 

leads to an increase in end-to-end delay. The proximity allocation algorithm, which 

reduces the delay incurred in finding mapped nodes. However, the system model 
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considers the entire end-to-end network slice, so the proximity allocation algorithm 

cannot reduce the delay of the entire end-to-end network slice if the considerations are 

not comprehensive enough. As the total number of users increases, the average user end-

to-end latency for each algorithm is essentially the same, due to the sufficient resources 

on the core and access network sides under the simulation conditions. Therefore, it can 

be seen that the algorithm proposed in this paper outperforms the greedy algorithm and 

the proximity allocation algorithm in optimizing the end-to-end delay. 

Figure.4. shows the curve simulation diagram of the system throughput changing 

with S/N ratio. From the simulation results, it can be seen that the network throughput 

increases with the increase of S/N ratio, and the performance improvement of the 

proposed algorithm is more obvious in terms of system throughput. When the signal-to-

noise ratio is greater than 3 dB, the proposed algorithm outperforms the greedy algorithm 

and the proximity allocation algorithm in terms of system throughput performance. 

When the signal-to-noise ratio exceeds 15 dB, the system throughput growth rate 

becomes slower. It means that the throughput of the system network has already started 

to saturate and the increase in signal power is no longer decisive. 

 

Figure 3. The change of average end-to-end delay with the number of users. 

 

Figure 4. Relationship between system throughput and signal-to-noise ratio. 
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5. Conclusion  

Through the study of systems sliced by eMBB and sliced by URLLC, a multidimensional 

resource allocation algorithm that unites communication, computation and storage 

resources is proposed to solve the multidimensional resource allocation problem of the 

system. A system model of multidimensional resources is developed, modelling the 

resource problem for multi-service slicing as a non-linear mixed-integer programming 

problem. A combination of the extended Lagrange algorithm and the branch-and-bound 

method is iterated until the resulting integer solution satisfies the constraints and the 

optimal resource allocation strategy is obtained. The algorithm is verified to improve the 

throughput of the system through experimental simulation comparisons. Optimizing the 

multi-dimensional resource allocation problem for multi-service networks improves the 

overall network performance. The next research direction is placed on continuing the 

search for other network factors in the system model, such as energy consumption, edge 

computing, etc. Added to the considerations of the model, the algorithm is further 

optimized to improve the performance of the algorithm. 
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