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Abstract. Production of low-quality or faulty products is costly for manufactur-
ing companies since it wastes a lot of resources, human effort, and time. Avoiding
such waste requires the correct set of process control parameters, which depends on
the dynamic situation in the production processes. Research so far mainly focused
on optimizing specific processes using traditional optimization algorithms, mainly
evolutionary algorithms. To develop a framework that enables real-time optimiza-
tion based on a predictive model for an arbitrary production process, this paper ex-
plores the application of reinforcement learning (RL) in the field of process param-
eter optimization. Inspired by the literature review on both, production process pa-
rameter optimization, and RL, a model based on maximum a posteriori policy opti-
mization that can handle both numerical and categorical parameters is proposed. A
validation study conducted on data sets from production fields compares the trained
model to state–of–the–art traditional optimization algorithms and shows that RL
can find optima of similar quality while requiring significantly less time.
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1. Introduction

Potential inspection cost reduction can be achieved by inspecting the quality of the part
in the production with the help of a surrogate model. These surrogate models can either
be a digital clone, FEM simulation, or an approximation model. Traditionally, statistical
methods were used to build an approximation model, but in the last couple of decades
significant work has been done in the field of machine learning (ML) to build an approxi-
mation model, also denoted as a predictive model. The predictive model is used to predict
the quality of the part in the production with the help of input parameters (using a com-
bination of raw material parameters, assembly parameters, process control parameters,
production parameters, etc). A predictive model helps to predict the quality of the part,
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thereby reducing the inspection cost but it does not focus on improving the quality of the
part or reducing the scrap rate. The solution to the latter is termed process parameter op-
timization, where the objective is to find an optimized set of process control parameters.
Although many traditional algorithms like particle swarm optimization (PSO), genetic
algorithm (GA), simulated annealing (SA), basin hopping (BA) and differential evolu-
tion (DE) [1–3] are used in recent studies, they lack the potential for real-time in-process
applications. The study presented here tries to answer the two research questions:

• How can reinforcement learning (RL) be used to find quality-oriented optimized
control parameters for in-process optimization of a production process?

• How does the RL perform compared to traditional optimization algorithms?

2. Recent work

There are many approaches inspired by biological evolution to find the optimal parame-
ter solution for a simulated production process with either a white-box model or a black-
box model. According to a review by Weichert et al. [2], evolutionary algorithms are
commonly researched for process optimization, mostly with particle swarm optimization
(PSO) and genetic algorithm (GA). Besides these, other algorithms like differential evo-
lution (DE), basin hopping (BH), and simulated annealing (SA) are also used for finding
optimal parameters of the process given a simulation model [4–12].

A vast amount of research has been conducted in the last decade in the field of RL.
The most notable example is the AlphaGo by Deepmind which could defeat the best Go
player [13]. The adoption of RL has immensely helped the field of robotics, especially in
the assembly of automobiles. Only a little research addresses the use of RL for process
parameter optimization.

He et al. [14] described decision-making in textile manufacturing as a Markov De-
cision Process (MDP), allowing them to use a Deep Q-Network (DQN) to find optimal
parameters for a textile color fading ozonation process. The results showed that RL is
a promising technique to optimize the parameters of a production process, but the au-
thors point out that the availability of data is limited in textile production, hampering the
application of machine learning.

Hayashi and Hasaki [15] used a DQN to find the optimal design of a plane frame un-
der static loads. To optimize two parameters, an action space was modeled that allowed
to discretely increase or decrease either of the two-parameter values or keep them con-
stant. The environment returned a binary reward, depending on whether the restrictions
were met. As there is no natural terminal state for such a task, the episode length was
set to a fixed number of steps. This allows batch processing in the exploration phase,
speeding up the process significantly. The output of the DQN was further optimized by
particle swarm optimization (PSO) and simulated annealing (SA), showing better results
than using only traditional methods without RL [15].

Overall, the literature review revealed that RL is only rarely used to optimize the pa-
rameters of production processes. However, the initial attempts [14,15] with RL methods
for parameter optimization showed promising results. As there is no general framework
available to optimize parameters across different domains, the question arises of whether
RL is a suitable method to efficiently find optimal parameters for different use cases.
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3. The Problem

The problem of production process parameter optimization (P3Opt) can be divided into
two separate parts, namely: Process Model, and Parameter Optimization.

3.1. Scope of the research

Within the scope of this paper, only those production processes are considered whose
production data consists of either continuous/numerical or discrete parameters. For a
typical production process, production data consists of raw material data, assembly pa-
rameters, environmental conditions, process parameters, and data generated during the
process. A few examples of process parameters include tension of wire in the wire-EDM
machine; roll gaps, forces, torques for a rolling machine, applied pressure for a cleaning
process, temperature zones for a forming process, etc. With the availability of both qual-
ity and production data, machine learning (ML) algorithms can be used to predict qual-
ity parameters with production data by training a model. The model that can predict the
quality of the produced parts with production data is termed a predictive quality model
(PQ–model).

3.1.1. Process Model

Process parameters can be further divided into controllable and uncontrollable parame-
ters depending on whether they can be manipulated during the process [2]. Performing
an optimization loop to find optimized controllable parameters is highly expensive and
time–consuming in a real process and therefore a process simulation is a necessary pre-
requisite. On the other hand, it is also difficult to create a Finite Element Method (FEM)
based simulation for a complicated production process. With the availability of historical
production data and quality data, a PQ–model can be trained with ML algorithms [16]
which can then be used as a surrogate model of the production process.

3.1.2. Control Parameter Optimization

In order to improve the quality of the produced parts and to nullify the production of
faulty parts, a recommendation mechanism is required that can suggest possible changes
for control parameters in a production process. Without loss of generality, all production
parameters can be divided into controllable Xc and uncontrollable parameters Xu. For ith

part produced in the process under production, the goal is to find optimized Xc parame-
ters that optimize the quality of the finished part in the next iteration. Quality–oriented
optimization has twofold benefits: first, it overcomes the defect if the ith iteration pro-
duced faulty parts, and second it enhances the quality by enhancing the confidence score
of optimized values based on the PQ–model. The optimization problem represented in
(1) finds optimized parameters Xc with the trained optimization model.

Xc = FP3Opt(Xo,Mprocess) (1)

where Xc denotes list of control parameters, FP3Opt is the optimization model to be
trained, Xo denotes the process parameters at ith iteration and Mprocess is the process
model aka. PQ–model.
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3.2. Out of scope

Time–series and image data are out of the scope of this paper. Time–series constitutes
data coming from sensors, for example, the vibration of a table during a milling process,
variation in temperature, force applied for a forming process, etc. A few examples of pro-
duction use cases with image data include ultrasonic imaging of resistance spot welding,
microscopic imaging of parts for technical cleaning, etc.

4. Reinforcement Learning

As evident from section 2, PSO and GA are the most widely used algorithms for find-
ing optimized process parameters. In this work, RL approach is considered to find op-
timized control process parameters for real–time optimization. A comparative study of
evolutionary algorithms and RL based algorithms is conducted in Section 6 to validate
the approach.

ML can be broadly divided into supervised, unsupervised, and reinforcement learn-
ing (RL). Supervised learning uses labeled data, unsupervised learning learns patterns
from unlabeled data, whereas RL learns by interacting with an environment. The goal of
RL is to maximize a reward by taking optimal actions in an environment. The power of
RL was recently demonstrated in various scenarios ranging from relatively simple appli-
cations like Atari games [17] to more complex ones like the game Go or even self–driving
vehicles. Büscher et al. [18] recommended the possible usage of RL for resource efficient
cleaning process. Three basic elements of an RL algorithm are agent, environment, and
reward.

Environment and agent: As the overall goal of RL is to learn optimal decisions, the
first thing required is an instance of making these decisions and learning from them. This
decision–maker, which can also be considered a controller, is called the agent. The agent
is continuously interacting with a controlled system, the environment. The environment
sends a control signal, an observation, to the agent. Based on the observation, the agent
decides on an action, which it transmits to the environment. The environment will take
the action into account to compute a new state. Information about the new state is then
again transferred to the agent in the form of an observation and in addition, the agent
receives a reward for its action. These steps are repeated until a termination criterion is
met.

Environment

Agent

,

Observations:
State 

Reward 
Action 

Figure 1. Interaction between agent and environment.

Although continuous time scenarios are possible, RL usually builds on the assumption of
discrete time steps. For these steps t ∈ {0,1,2, ...,T}, the environment provides the agent
with a representation of its current state St ∈ S where S is a set of possible states. The
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agent selects an action At ∈ A(St) where A(St) is the set of all possible actions for St . In
the next time step, the agent receives a numerical reward Rt+1 and the updated state St+1,
as shown in Fig. 1. Due to the abstract formulation of the RL framework, it is applicable
to a wide range of decision–learning problems and has proven to be quite useful for most
of them.

Rewards and Returns: Rewards are required to formalize the goal of the agent. The
agent receives a reward Rt ∈ IR at each time step and the goal is to maximize the total
reward. Therefore, it must always take the action that will yield the highest cumulative
future reward, which may not be the highest reward for the current time step. When
modeling the reward, it is important to ensure that it reflects on the actual goal and not
the way the goal should be achieved. For example, if a robot is trained to play football,
it should be rewarded for winning a match, not only for scoring goals. The latter could
lead to the robot scoring many goals but allowing the opponent to score even more, and
ultimately failing to achieve the actual objective. Rewards are given for single–time steps,
an additional term is used to formalize the objective of an RL task: the expected return
Gt . For the simplest case, the expected return is just the sum of all future rewards Gt =
Rt+1+Rt+2+Rt+3+ ...+RT [19]. There are mainly two main approaches for solving RL
problems, namely methods based on value function and methods based on policy search.
These are described in the below subsections.

4.1. Value function

Value function methods are based on estimating the value (expected return Gt ) of being
in a given state. The state–value function Vπ(s) is the expected return when starting in
states and following the policy (π) thereafter. Assuming V ∗(s) is the value function with
optimal policy π∗, optimal state value function can be defined as:

V ∗(s) = max
π

V π(s) (2)

In practice, a different function, state–action value function which is also called as Q-
function, is used rather than the value function since transition dynamics are generally
unavailable. The Q–function Qπ(s,a) is similar to V π with the difference that an initial
action a is given and the policy π is followed from the next state onwards [20]. Actual
Q–learning is realized by defining the function as a Bellman equation [21].

4.2. Policy Search

As opposed to the value function, the policy search method directly searches for an op-
timal policy π∗ rather than learning a value function. Parameters πθ of policy π are up-
dated to maximize the expected return E[R|θ ] with either gradient–based or gradient–
free approaches [22]. Gradient–free approaches are generally used for lower dimensional
problems whereas gradient–based approaches have been found to perform better for
higher dimensional problems.

4.3. Actor Critic Methods

Directly learning a policy rather than state–action values has some advantages, e.g., it
enables learning for continuous and high–dimensional action spaces, a domain where
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Figure 2. Actor Critic Method

pure value–learning usually struggles. However, they also have some shortcomings com-
pared to value learning. To overcome these shortcomings, the actor–critic concept was
introduced which combines value function with a representation of policy. It consists of
two parts, the policy part, actor that selects actions, and the estimated value function,
critic, that evaluates the action made by the actor. The major difference between actor–
critic methods and other policy baseline methods is that actor–critic methods use the
value functions as a baseline for policy. Actor–critic methods were already used over 50
years ago but did not play a major role since the introduction of Q–learning in the early
nineties. However, this changed recently with the success of deep Q–learning, because in
addition to the aforementioned handling of continuous action space, actor–critic methods
only require a minimum of computation to select actions and they can explicitly learn
stochastic policy/policies [19]. Fig. 2 describes the actor–critic method.

4.4. Model–based methods

Model–based reinforcement learning uses a model of the environment to make predic-
tions about how the environment will behave. This allows the RL agent to learn from it’s
experience and make more informed decisions about what actions to take in the future. In
contrast, model–free reinforcement learning does not use a model of the environment and
instead relies on direct interactions with the environment to learn about the consequences
of actions.

4.5. Deep Reinforcement Learning

While many approximation methods can produce satisfactory results, no other method
has received attention in the last decade like Deep RL (DRL) has. Inspired by the suc-
cess of deep learning in other domains, its application has become increasingly popular,
making it the most common method that is used today. The popularity of DRL has been
boosted by breakthroughs in several domains, starting with Atari games in 2013 [17] and
the well–recognized AlphaGo, which beat the Go world champion in 2015 [13]. Some
of the most important approaches for DRL are described in the below subsections.

4.5.1. Deep Q–learning

The Deep Q–Network (DQN) approach showed that, contrary to the general belief at the
time, learning value functions using large non–linear approximators like neural networks
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(NNs) can be stable. The stability of learning was achieved by two key ideas: first, the
authors trained the network with data from an experience replay buffer. The experience
replay buffer is a finite cache storing transition samples in the form of the tuple (st , at
,rt , st+1). The transitions are sampled from interactions with the environment following
an exploration policy. When the buffer is full, the oldest samples are discarded. Using a
buffer addresses some issues that prevented the success of DRL up to this point.

4.5.2. Deep Deterministic Policy Gradient (DDPG)

Although DQN was a breakthrough for DRL, it has one major drawback: it is only able
to handle discrete action spaces, i.e., the number of actions per dimension is finite. In
reality, however, many control tasks require continuous control. To address this issue,
Lillicrap et al. [23] introduced Deep Deterministic Policy Gradient (DDPG), an actor–
critic method that builds up on DQN.

4.5.3. Maximum a posteriori Policy Optimisation (MPO)

Another actor–critic method that uses deep learning is maximum a posteriori policy op-
timization (MPO). It has some similarities with DDPG but is based on the coordinate as-
cent on a relative entropy objective. The key idea of MPO is to transform the RL problem
into an inference problem. This makes it possible to apply inference methods such as the
expectation maximization (EM) algorithm. The algorithm alternates between the E–step,
and the M–step, which updates the policy using the weighted state–action samples from
the E–step as targets for supervised learning.

5. Methodology

5.1. Surrogate Model for production process

A real process in a production unit can be prone to behavioral changes. This can be a
result of various influencing factors like environmental temperature, changes in machin-
ing parameters, various human factors, etc. Thus, training of an RL–agent for optimiza-
tion of the production process parameter on a real process can lead to training with an
incomplete number of possibilities that occurred historically. Apart from that, training
on the real process in most cases is not possible owing to the different production units,
processing time, and evaluation time. Therefore, a simulation of the process is desired.
A FEM simulation of the process which takes into consideration various influencing fac-
tors can be used as a surrogate model when available. In other cases, where historical
production data and quality data are available, an ML–based predictive model can be
used as a surrogate model provided it is able to find good relationships between input
and output parameters. The model performance should be acceptable for the production
process under consideration. The predictive model takes process input parameters and
outputs the quality target, thus approximating the behavior of the production process.
For the experiments mentioned in this paper, an XGBoost model was trained. In practice,
this can be done with Automated Machine Learning (AutoML) solutions. The predictive
model is used as an environment for the RL–agent interface to mimic the real production
environment
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5.2. Reinforcement Learning Models

The predictive model described in Fig. 6 acts as an environment for RL–agent. RL–agent
was designed with Hybrid--MPO model proposed by Neunert et al. [24]. It can support
both numerical as well as continuous action spaces. The general structure of the model
is similar to DDPG, at its core are four NNs: one actor network π , one critic network Q,
and the respective target networks. The actor–network has to jointly output continuous
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Figure 3. Architecture of the actor network π . The target network π ′ shares the same architecture, it’s weights
are updated at the end of each iteration.

and categorical actions. To do this, a fully–connected NN with three hidden layers is
used, which is shown in Fig. 3. Each layer has a size of 256 neurons. After each layer,
batch normalization is applied and the output is passed to a Rectified Linear Unit (ReLU)
activation function. Choosing suitable layer sizes is a trade–off between the complexity
of the model and its ability to handle complex data with many input and output dimen-
sions. They were selected based on the original Hybrid MPO model. The input layer size
matches the number of all parameters, both controllable and uncontrollable ones. The
actor–network has three output layers. The first output layer returns the mean μ for all
continuous actions c. The second output layer returns the covariance Σ for all continu-
ous actions in form of a Cholesky matrix L. As L is a lower triangular matrix, the size
of the second output layer is c·(c+1)

2 . Based on a normal distribution using μ and Σ, c
continuous actions are sampled. The third output layer of the network contains the prob-
abilities for all discrete actions. For each discrete action dimension d, the probabilities
for all categories of this feature kd are computed by applying D softmax operations on
the corresponding outputs of the network. These probabilities are then used to sample
D discrete actions. Both discrete and continuous actions are concatenated to one vector
to be processed by the environment and the critic network. A simple fully connected
network with three layers of size 512 each is used to approximate the value function of
the critic Q. The size of the input layer is defined by the sum of both continuous and
discrete actions and the number of state dimensions which is equivalent to the number
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of all process parameters, both controllable and uncontrollable. The current state and the
actions selected by the actor are simply concatenated to one input vector. The output of
the critic network is a scalar, the estimated Q-value.

In addition to the networks, a replay buffer is used to generate statistically indepen-
dent samples that allow stable training. The networks are trained iteratively. At the be-
ginning of each iteration, trajectories are sampled to fill the replay buffer. This is done
using the target actor π ′. First, a sample is drawn from the training data set by the en-
vironment. Only samples that are not in the target class are considered. This way, the
actor has to learn how to optimize poor samples. If it would get mainly samples from the
target class, it might struggle to deal with parameters that have a low probability for the
desired classification later. The environment clamps the features of s0 before passing it
to the target actor. The target actor selects an action that is processed by the environment
to compute the new state st+1 and reward rt+1. The tuple (st ,at ,st+1,rt+1) is saved in the
replay buffer to be used for training the actor and critic later. This process is depicted in
Fig. 4. It is repeated for a fixed number of steps, the episode length. The entire process
described above is repeated for multiple episodes until the replay buffer is filled. The
size of the replay buffer can be set manually as a hyperparameter. Once the replay buffer

Training Data Environment

Predictive
Model

Replay
Buffer,

,

,

Figure 4. Trajectory sampling during training. Note that the target actor π ′ is used to select actions.

is filled, the next step is to update the critic using temporal difference (TD) learning.
This is a distinct difference from the original hybrid MPO model where Retrace is used
to update the critic network. To compute the loss of the Q network, the SmoothL1 loss
function �(x,y) was used:

�(x,y) =

{
0.5(x−y)2

β |x− y|< β
|x− y|−β ·0.5 otherwise.

(3)

SmoothL1 loss was chosen because it offers steady gradients for large values of x like
L1 and reduces oscillation for small updates of x like L2 [25]. To ensure stable learning,
both critic Q and target critic Q′ were considered to compute the loss L, similar to the
loss for DDPG.

L = �
(
Rt+1 + γQ(St+1,a),Q′(St ,At)

)
(4)

β was set to 1 as this is the value most frequently suggested in the literature. The discount
factor γ was set to 0.99, which is also a value that was used for the original hybrid–MPO
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model. The critic is optimized using “adaptive moment estimation” method, commonly
referred as Adam, with a learning rate of 0.0003, which also matches the original model
[24]
To train the critic, the states from the replay buffer are passed to the target actor. However,
instead of getting the hybrid action vector, the distributions are stored (the second–to–
last step in Fig. 3). These distributions are used to sample 64 new hybrid action vectors
for each state which are then passed to the Q′ to get the corresponding Q–values. To
complete the E–step of MPO, qi j are computed according to (5).

qi j = q(ai,s j) = exp
(

qπ(si,s j)

η

)
/Z( j) (5)

where Z( j) = ∑i exp( qπ (si,s j)
η ) and η is the temperature parameter. Adam is used to op-

timize η . The constraint for the dual function εdual is set to 0.1. Finally, the M–step
has to be applied. To compute the loss for the actor network π , the outputs μ , Σ and
p are decoupled. For discrete actions, the average log probabilities and KL divergences
for all discrete action dimensions D are computed; the categorical probabilities pd are
decoupled for each discrete feature d.

Both E–steps and M–steps are computed in batches of size 128. The batch size was
deliberately chosen to be much smaller than the one used for the original model (3072) as
large batch sizes might compromise the model’s quality. Furthermore, the original model
had to process state and action spaces of lower dimensions on a more powerful graphics
processing unit (GPU). As this model is intended to be used for complex data sets on
mid–range GPUs, a small batch size ensures that the entire batch fits into the memory of
the GPU.

All tuples in the replay buffer were rerun five times for each iteration. In this way,
fewer samples are required and the number of function evaluations of the predictive
model is reduced, which speeds up the training. At the end of one iteration, the param-
eters of the target network are updated by copying the ones of the actor and critic net-
work, respectively. Training is run for 50 iterations with early stopping if the mean re-
ward does not improve over ten iterations. Once training is completed, it is possible to
use the model to predict optimal parameters for a given sample. To do this, the model
is provided with the original process parameters, both controllable and uncontrollable
ones. The next steps are very similar to trajectory sampling to fill the replay buffer. Only
for prediction, the action actor network π is used rather than the target π ′ and only states
and corresponding rewards are stored in the buffer. 200 pairs of states and rewards are
sampled, and the pair that has the highest reward is selected as optimal parameters. The
prediction procedure is shown in Fig. 5.

While a high number of iterations for the prediction process generally improves the
result, it is also possible to choose a number smaller than 200. Pre–tests showed that
even with only ten iterations, the results are usually still acceptable. However, if function
evaluations of the predictive model are not too expensive, it is preferable to consider a
higher number of samples to increase the probability of finding an optimized point. Apart
from the function evaluations, the prediction is very fast because the actor is implemented
by a simple fully connected NN. Additionally, processing scales very well for multiple
initial process parameters because of batch processing.
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Figure 5. Flow chart for prediction of optimized process parameter using the trained policy and predictive
model

Figure 6. Experiment set–up for in–process process parameter optimization. Pre–trained predictive model is
the requirement for the process parameter optimization model to start training.

6. Experiments and Results

6.1. Experimental set–up

There are three major sections of the experimental setup, namely the predictive model,
the parameter optimization model, and the prediction endpoint. The experimental setup
is depicted in Fig. 6. As a part of the preparation for P3Opt, production data and quality
data from real production lines should be collected. The first step then is training a pre-
dictive model with production data and labels as quality data, the second step is training
a process parameter optimization model and the last step is to use the process parameter
optimization model for in–process optimization of the production processes. The setup
shown in Fig. 6 is specifically for a tabular structured data set.

6.2. Data sets

The focus of the research is to find a generalized approach for P3Opt. The validation is
not focused on a particular data set but rather on a group of seven production data sets
that originate from various fields, including the production of turbochargers, LEDs, steel
plates, 3D–printing, rotogravure printing, etc. These data sets vary not only in their origin
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Table 1. Details of the production data sets that were used for testing. F is the number of input parameters,
C the number of controllable continuous parameters, D the number of controllable discrete parameters, P
denotes number of combinations for D , and κrel is the mean condition number of the data sets.

Name Type Samples F C D P score κrel

DF1 reg 75977 15 6 2 8 0.994 2.749
DF2 clf 50 12 7 1 2 1.000 0.000
DF3 reg 244 15 8 1 4 0.795 0.006
DF4 clf 3614 171 103 6 486 0.724 801.856
DF5 clf 1941 28 18 1 2 0.985 3.866
DF6 clf 277 35 15 9 12960 0.769 30.416
DF7 clf 6938 29 19 2 16 0.989 13.681

but also cover a broad range of complexity including the number of input features, task
type i.e. regression or classification, and multiple categorical (discrete) features which
lead to a higher number of total combinations for RL agent’s action space. For all data
sets, approximately 30% of the input features were selected as fixed. The remaining
controllable features are split into continuous features C and discrete features D . For all
selected production data sets, the vast majority of controllable features were numerical.
The value span for the controllable features was calculated from historical data and it was
used to limit the search space for RL–agent. The accuracy or r2-score of the predictive
models used for prediction was high for all data sets.

6.3. Results and Validation

Experimental results for eight production data sets are summarized based on three met-
rics, namely probability score, distance, and stability. All three together constitute the
reward for the RL algorithm
Reasons for the choice of metrics:

• objective score: The aim of the predictive model is to inform how good are the
input values to get the target output, which is represented by class probability for
classification tasks or absolute difference for regression tasks. Probability score
being the major scoring factor, it only makes sense to include it as a part of the
reward.

• distance: For in–process optimization, one would like to avoid a drastic change
in the control parameter. For example, it would be easier and more practical to
change a temperature by 5◦ Celsius than by 50◦ Celsius. Hence, a distance factor
is introduced in the reward function which considers the distance between the
current state and the next state. This is done with one of the most frequently used
distance metrics for data that contains both numerical and categorical features -
Gower distance [26]. It assigns a similarity score si j between two samples i and j.

• stability: It is possible that the trained predictive model has singularities. To avoid
getting trapped in the singularities of the predictive model, a stability check is in-
troduced for the parameter solution as a part of the reward function. This stability
check is conducted by calculating the condition number (κrel). A lower condition
number implies higher stability for the parameter solution.

κrel = limsup
x̃→x

|| f (x̃)− f (x)||
|| f (x)||

||x||
||x̃− x|| (6)
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Figure 7. Total rewards for the different algorithms on a selection of production data sets. Error bars denote
95% confidence intervals. Crosshatched bars indicate incomplete results due to the time limit.

Figure 8. Probability for the different algorithms on a selection of production data sets. Error bars denote 95%
confidence intervals. Crosshatched bars indicate incomplete results due to the time limit.

A comparison between the performance of RL–P3Opt with respect to other traditional
optimization techniques like PSO, GA, SA, DE, and BH is presented and compared
across these three metrics. Due to the complex nature of some production data sets,
even with the limitation of only considering the most important categorical features for
optimization with traditional algorithms, the runtime was very long for some of them.
For example, optimizing 100 samples from DF4 with BH took over a week, and the
optimization with DE was canceled due to a high expected runtime. A time limit of eight
hours per algorithm was introduced for the test study. If an algorithm did not complete
the optimization of all 100 samples within the time limit, it was stopped and impartial
results are reported. Impartial results are marked with crosshatched bars in the plots. Fig.
7 shows the total reward obtained by the algorithms for the different data sets.

With some minor exceptions, all algorithms generally performed well. RL per-
formed just as well as the evolutionary algorithms, but for most data sets, BH showed
very good results too. However, its total reward was lower for more complex data sets
like DF6 and DF4. The only algorithm that failed to find optima of the same quality as
the others is SA. Looking at the reward, DF4 slightly stands out because all algorithms
obtained a lower reward than for any other data sets. Nevertheless, RL performs at least
as well as or better than all other algorithms, demonstrating its capability to handle com-
plex data sets.

The bar chart in Fig. 8 shows the objective score for the optimized parameters from
the predictive model. For a classification task, the objective score is the prediction prob-
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Figure 9. Distance for the different algorithms on a selection of production data sets. Error bars denote 95%
confidence intervals. Crosshatched bars indicate incomplete results due to the time limit.

ability score and for a regression task, it is the normalized mean absolute error (MAE)
(c.f. (7)).

Ocl f = pclass ∈ [0,1]

Oreg = 1− |ŷ− p|
yrange

∈ [0,1]
(7)

where pclass is the desired class probability obtained from a classification model, ŷ is the
optimal numerical target value and p represents the predicted target value from a regres-
sion model, and yrange is the span of target parameter values yrange =max{ŷ−ymin,ymax−
ŷ}. All algorithms could find optimized samples with an extremely high objective score.
The only exception is BH with an acceptable mean probability well above 0.8 for DF6
and a very unstable result for DF4. However, BH struggled with that particular data set
in general. It could only optimize six samples within the time limit of eight hours, which
is why the numeric results are not very meaningful.

A weakness of the RL model is revealed in Fig. 9; it struggles to find optima that
are as close to the original sample as those found by other algorithms. With the excep-
tion of DF4, where RL has some advantages because it is the most complex data set, the
traditional algorithms are superior in this aspect. Even SA, which is the algorithm that
generally shows the poorest results, was able to find optima that are much closer to the
original sample for most data sets. Overall, the optimized points found by RL are still
close. Furthermore, the distance for RL shows a low variance for all data sets, i.e. there
are not many outliers and the results are reliable. Thus, the RL model’s performance in
this aspect is still satisfactory, even though traditional algorithms clearly have an advan-
tage if the focus is on finding optima that are as close as possible to the original samples.

The stability of the data set is measured with its corresponding predictive model in
the form of the relative condition number κrel . The mean condition number (κrel) for a
data set is the mean of relative condition numbers calculated on random samples from
data set. Condition number varies depending on the data set. For example, DF4 has a
very high mean condition number κrel of 801.856; a higher condition number implies a
less stable data set. Hence, finding a stable point for such a data set is much harder than
for data sets like DF2 or DF3, where κrel is close to 0. For this reason, Fig. 10 shows
the condition numbers separated by data sets. The optimization results on the production
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Figure 10. Condition for the different algorithms on a selection of production data sets. Error bars denote 95%
confidence intervals. Crosshatched bars indicate incomplete results due to the time limit.

Figure 11. Runtime for optimization for the different algorithms on a selection of production data sets. Error
bars denote 95% confidence intervals. Crosshatched bars indicate incomplete results due to the time limit.

data sets show that RL, PSO, and GA consistently find very stable optima. DE was, with
few exceptions, also able to find stable optima, while SA and BH in particular struggled
to find optima with a low condition number.

The time required to optimize a single sample correlates strongly with the complex-
ity of the data set for the traditional algorithm. To increase the visibility of small values
for simple data sets, the results in Fig. 11 are therefore also split by data sets. Despite be-
ing slower than RL, PSO, and SA also require significantly less time than the remaining
three algorithms. Out of those, DE is the slowest on most data sets. This is especially the
case for DF4, where DE could only optimize three samples before the time limit was ex-
ceeded. The optimization of a single sample took over 3.5 hours on the GPU server with
an AMD Ryzen 7 3800X processor with eight physical cores and 64 GB of RAM. BH
also takes much longer than the three fastest algorithms, but the runtime does not corre-
late as strongly with the data set complexity as for DE. While it finds optima of poorer
quality than RL and evolutionary algorithms, it also failed to optimize all 100 samples on
two data sets. Finally, GA is also much slower than RL, PSO, and SA, but scales much
better than DE and BH. It is not affected strongly by the number of controllable features.

The runtimes on the production data sets emphasize the importance of batch pro-
cessing. The RL model is able to process all 100 test samples in a single batch, making it
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Figure 12. Runtime for the RL model on a selection of production data sets. Runtime is split into optimization
prediction time (left) and training time (right).

by far the fastest algorithm, the PSO implementation is at least able to process the entire
population for a single sample at once, but this is not the case for GA or DE. This is one
reason why PSO is much faster than the other evolutionary algorithms. Fig. 12 shows
the time it takes to optimize a single sample inside a batch of 100 for the different data
sets. The results indicate that optimization runtime is highly correlated with the number
of features in the data set. Training, on the other hand, is only very slightly impacted by
the complexity of the data set. DF7, which is one of the more complex ones, in fact, has
the shortest training time. It is possible that this counter–intuitive result is caused by a
lower overall load of the server at the time of prediction.

7. Conclusion

While process parameter optimization is not a new field, the scope of RL in this field had
not been explored extensively. Additionally, traditional process parameter optimization
techniques, mainly evolutionary algorithms, are not suitable for real–time optimization
due to their high computation time. This paper explores the possibilities of RL algorithms
to find optimization results in real–time that can be used for in–process production op-
timization. To accommodate both continuous and discrete parameters, a Hybrid–MPO
proposed by Neunert et al. [24] is recommended. The validation study results show that
RL optimization is as good as traditional optimization algorithms in terms of reward and
much better in terms of prediction time. For traditional optimization algorithms, the pre-
diction time is the same as the optimization time since there is no training of the model.
The study conducted in this paper does not focus on a particular production use case,
it provides a general procedure for production parameter optimization which can be ex-
plored and fine–tuned as per the production use–case requirements. The proposed opti-
mization model can help manufacturing companies optimize their processes which not
only saves cost but also results in more efficient use of resources, ultimately improving
the sustainability of production.
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