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Abstract. In recent years, the market of electric vehicles (EVs) has developed 
rapidly across the world, and recycling a large number of their spent power batteries 

has become an urgent challenge today. The resulting closed-loop supply chain 

(CLSC) have been considerably studied under different aspects. However, there is 
a lack of research investigating electric vehicle batteries (EVBs) network design 

under uncertainty. This paper focuses on the issues of quantitative modelling for the 

network design of a CLSC of used EVBs consisting of power battery manufacturers, 
EV retailers, collection centers, recycling centers, echelon utilization centers and 

disposal centers, where power battery manufacturers can remanufacture used EVB 

products. We investigate a two-stage stochastic mixed-integer programming (SMIP) 
model to design the network and the model is solved using the Benders 

Decomposition (BD) method to derive optimal solutions. Numerical experiments 

show that the SMIP model can effectively hedge against high uncertainty. 
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1. Introduction  

In recent years, the growing concern with energy structure transition and environmental 

protection has promoted the fast development of Electric Vehicles (EVs). According to 

the statistics, the accumulated sales of EVs are projected to reach 5 million in 2020[1]. 

Along with the rapid growth of the EV market and the applications of power batteries, a 

huge number of used EV batteries (EVBs) will intensively face the retirement. According 

to the China Automotive Technology and Research Centre, 120-170 thousand tons of 

used EVBs were retired by 2020. It is well known that all materials used for making 

EVBs are extremely hazardous to both the environment and human health. Therefore, 

how to properly deal with used EVBs has become an urgent challenge today.  

Due to the economic benefit and environmental activism, many manufacturers are 

willing to take back used EVBs to produce remanufactured products in closed-loop 

supply chain (CLSC), which consist of decisions related to both forward flow of brand-

new products and reverse flow of returned/remanufactured products. To deal with the 
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uncertainties associated with CLSC operations, it is important to generate a proper 

network design to address the system risk [2]. In the literature, study of network design 

of CLSC has gained great attention of both academic research and industrial practitioners 

[3]. Demand and return rate are the two parameters that are most frequently taken as 

uncertain in the related work [4]. In addition, some studies also consider other types of 

uncertain as well, such as transportation costs [5], quality [6], manufacturing cost [7], 

selling price [8] and recovery rate [9].  

 Through analysis of the model and the main results, we have drawn some 

meaningful points in this research. First of all, the majority of the existing models on 

CLSC are mainly focused on pricing decisions and channels coordination, there is a lack 

of quantitative network design models that represent advanced applications in recycling 

industries; Secondly, there is not much literature relating to EVB recycling network, also 

few studies on the research of investigating EVB recycling at the enterprise level. Thirdly, 

except demand and return rate, there are few studies that consider price, cost and 

recovery rate as uncertainty in their mathematical model. 

To fill this gap, this paper develops a stochastic mixed integer programming (SMIP) 

model to optimize recycling networks for EVBs. In our model, we consider three 

potential strategies to handle used EVBs, including recycling, remanufacturing, and 

disposal. To make the model more suitable, we incorporate the uncertainty of demand, 

recycling price and cost in the model. The goal is to maximize the network profit by 

strategically locating participants within the CLSC network. To efficiently solve the 

model, an enhanced Benders Decomposition (BD) algorithm is proposed, a effectiveness 

of the solution method is validated by numerical experiments. 

2. Preliminaries 

In this study, we consider a CLSC network structure of recycling EVBs, which is 

composed of seven members--power battery manufacturers, EV retailers, customer 

zones, collection centers, recycling centers, echelon utilization centers and disposal 

centers. In this network, power battery manufacturers produce new EV products, and 

then distributed in markets by EV retailers.  The used EVBs are collected from customers 

to EV retailers, then transfer them to collection centers. After proper inspection and 

grading at collection centers, the used EVBs will be classified and distributed via 

different reverse channels. Most used EVBs which can be repaired or remanufacturing 

will be sent to recycling centers, whereas a small number of scrapped EVBs will be 

transported to disposal centers for refuse disposal. The used EVBs in recycling centers 

that can be reused are transported to echelon utilization centers, as well as the rest are 

transformed into power battery manufacturers to remanufacture and reassembled into 

new EVBs. Overall, the notations are defined and summarized in Table 1. 
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Table 1. Notations. 

                                                                                                                       Descriptions 
i customer zones, i=1,2,…, I 
j candidates for locations of EV retailers, j=1,2,…, J 

k candidates for locations of collection centers, k=1,2,…, K 
l candidates for locations of recycling centers, l=1,2,…, L 

m power batteries manufacturers, m=1,2,…,M 

n candidates for locations of disposal centers, n=1,2,…, N 
q candidates for locations of recycling centers, q=1,2,…,Q 

r echelon utilizations, r=1,2,…, R 

a set of raw materials, a=1,2,…,A 
s scenarios, s=1,2,…,S ��  unit retail price of new EVBs �� unit recycling price of used EVBs �� unit wholesale price of new EVBs � potential market size � sensitivity of customers to the retail price of power battery 

A the quantities of spent power batteries consumers are willing to 
return free of charge 

k consumers’ sensitivity for recycling price ∆ unit benefit by recycling �
 unit wholesale price of new EVBs ��, ��� fraction of used EVBs transported to recycling centers and 

echelon utilization center  �� population density of customer zone i  ��, ��, ��, �� fixed establishing cost of different facilities ��, ��, ��, �� capacity of different facilities  �̃� , �̃�, �̃� , �̃� unit fuzzy processing cost of different facility �
�, ���, ���, ���, ���, ���, ��
 linear distance among different facilities �̃
��̃��, �̃�� , �̃��, �̃��, �̃��, �̃��, �̃�
�̃
� unit fuzzy transportation cost among different facilities ��  binary variable which equals ‘1’ if j is open, and ‘0’ otherwise �� binary variable which equals ‘1’ if k is open, and ‘0’ otherwise �� binary variable which equals ‘1’ if l is open, and ‘0’ otherwise ��  binary variable which equals ‘1’ if q is open, and ‘0’ otherwise �� binary variable which equals ‘1’ if n is open, and ‘0’ otherwise 

 
�!"# ,  ��!#$ ,  ��!$# ,  ��!#%,  ��!%&,  ��!&',  ()*+- ,
 ��!&.,  ��!'., /
!"0,  �
1!."2  

amount of used EVBs transported among different facilities in 

scenario s 

 

To handle the problem stated in the above, we propose some key assumptions. 

(1)  We uniformly use “power battery manufacturers” to represent power battery 

manufacturers and EV manufacturers; 

(2) For power battery, the processes of manufacturing, sale, recycling, echelon 

utilization and material reusing in remanufacturing are considered in one period. 

(3) According to [3], the market demand is a linear function of the power battery 

retail price and the recycling rate which is 3 = 4√6 − ���  ; 

(4) According to our investigation, we assume the amount of recycled power 

batteries is equal to 7 = 8 + : × ��. 

 This problem aims to determine the location decisions in the recycling network, 

such as EV retailers, collection centers, recycling centers and disposal centers, and the 

number of EVBs that should be transported from one facility to another. The objective 

of the model is to maximize the total profit in the entire recycling network. 
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3. Problem Formulation 

To formulate the problem, a two-stage stochastic mixed-integer programming (SMIP) 

model is proposed for the maximization of the total network profit. In two-stage 

stochastic approach, the decision variables are split into two types: scenario-dependent 

and scenario-independent. In the first stage, the decisions on the scenario-independent 

variables like number and location of facilities which are not affected by randomness are 

made. The amount of used EVBs transported between facilities which vary regard to are 

determined in second stage based on facilities location and realized uncertainty in each 

scenario. The total objective function in this approach consists of the sum of the first-

stage objective value and the expected value of all scenarios in the second stage. 

3.1. The First-Stage Model 

-4�  <>?!@��, ��, ��, ��, ��AB − (∑ �����∈# + ∑ �����∈% + ∑ �����∈& +∑ �����∈. + ∑ �����∈F )                                                                                       (1) 

Subject to: 

 ∑ ���∈# ≥ 1                                                                                                           (2) 

∑ ���∈% ≥ 1                                                                                                         (3) 

∑ ���∈& ≥ 1                                                                                                            (4) 

∑ ���∈. ≥ 1                                                                                                          (5) 

 ∑ ���∈F ≥ 1                                                                                                         (6) 

 ��, ��, ��, �� ∈ {0,1}  ∀L, :, (, M                                                                            (7) 

where the objective Eq.(1) is the expected net profit of entire network, which is 

obtained by subtracting the fixed cost of construction facilities from the expected profit 

for all scenarios * ∈ N , where <>?!@��, ��, ��, ��, ��AB = ∑ �!?!@��, ��, ��, ��, ��A!∈0   

constraints Eqs.(2) ~(6) guarantee that at least one of the potential facilities be selected. 

Constraint Eq. (7) is binary constraint. 

3.2. The Second-stage Model 
?!@��, ��, ��, ��, ��A = 

)4� O(�� − ��) ∑ ∑  
�!"#�∈#
∈" + ∆� ∑ ∑  �
!&"
∈"�∈& + P+ ∑ ∑  ��!&'�∈'�∈& +
 ∆�Q@∑ ∑  ��!&.
∈" + ∑ ∑  ��!'.
∈"�∈&�∈& A + ∑ ℎ�S�!�∈# − >∑ ∑ �̃�# ��!$#�∈#�∈$ +
∑ ∑ ��̃% ��!#%�∈%�∈# + ∑ ∑ �̃�& ��!%&�∈&�∈% + ∑ ∑ �̃�F ��!&F�∈F�∈& + ∑ ∑ �̃�&. ��!&.�∈.�∈& +
∑ ∑ ��̃'. ��!'.�∈.�∈' B − >∑ ∑ �̃
��∈# �
� 
�!"#
∈" + ∑ ∑ �̃����� ��!#$�∈$�∈� +
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∑ ∑ �̃����� ��!$#�∈#�∈$ + ∑ ∑ �̃����� ��!#%�∈%�∈# + ∑ ∑ �̃���∈& ��� ��!%&�∈% +∑ ∑ �̃����� ��!&'�∈'  �∈& + ∑ ∑ �̃�
��
 �
!&"
∈"�∈& + ∑ ∑ �̃����� ��!&F�∈F�∈& +∑ ∑ �̃����� ��!&.�∈.�∈& + ∑ ∑ �̃����� ��!'.�∈.�∈' +
∑ ∑ ∑ �̃�
1∈2
∈" ��
 �
1!."2�∈. B  T                                                                     (8) 

Subject to: 

          ∑ ∑  
�!"#�∈#
∈" ≤ 3(*)                                                                                                  (9) 
∑  ��!#$�∈# ≤ 3(*)W�   ∀X ∈ Y, * ∈ N                                                                       (10) 

∑  ��!$#�∈# ≤ 7(*)W�  ∀X ∈ Y, * ∈ N                                                                        (11) 

∑  ��!#$�∈$ = ∑  
�!"#
∈"  ∀L ∈ Z, * ∈ N                                                                  (12) 

∑  ��!$#�∈$ = ∑  ��!#%�∈% + S�!   ∀L ∈ Z, * ∈ N                                                         (13)                

∑  ��!#%�∈# = ∑  ��!%&�∈&   ∀ : ∈ [, * ∈ N                                                                (14) 

∑  ��!&'�∈' = �\ ∑  ��!%&�∈%  ∀( ∈ +, * ∈ N                                                             (15) 

          ∑  �
!&"
∈" ≤ �� ∑  ��!%&�∈%  ∀( ∈ +, * ∈ N                                                                  (16)   
∑  ��!&.�∈. ≤ ��� ∑  ��!%&�∈%   ∀( ∈ +, * ∈ N                                                            (17) 

∑  ��!&F�∈F ≤ ��^ ∑  ��!%&�∈%  ∀( ∈ +, * ∈ N                                                             (18) 

 ∑  ��!'.�∈. = ∑  ��!&'�∈% ∀6 ∈ _ , * ∈ N                                                                (19) 

∑  �
1!."2
∈" ≤ �1@∑ `1 ��!&.�∈& + ∑ `1 ��!'.�∈' A ∀a ∈ b, 4 ∈ 8, * ∈ N                (20) 

/
!"0 + ∑  �
!&"�∈& ≤ ∑  
�!"#�∈#  ∀ ) ∈ -, * ∈ N                                                   (21) 

`1/
!"0 = ∑  �
1!."2�∈.  ∀ ) ∈ -, 4 ∈ 8, * ∈ N                                                    (22) 

∑  ��!$#�∈$ ≤ ����  ∀L ∈ Z                                                                                       (23) 

∑  ��!#%�∈# ≤ ����  ∀: ∈ [                                                                                  (24) 

∑  ��!%&�∈% ≤ ����  ∀( ∈ +                                                                                     (25) 

∑  ��!&.�∈& + ∑  ��!'.�∈& ≤ ����  ∀a ∈ b                                                                (26) 
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∑  ��!&F�∈& ≤ ����  ∀M ∈ c                                                                                   (27) 

 
�!"# ,  ��!#$ ,  ��!$# ,  ��!#%,  ��!%&,  ��!&',  �
!&" ,  ��!&.,  ��!'., /
!"0,  �
1!."2 ≥0, ∀X, L, :, (, ), M, a, 6, 4, *                                                                                    (28) 

where equation Eq. (8) is to maximize the manufacturer’s profit under any scenario 

s, where the first term represents the sales of power batteries. The second item is the 

benefits of echelon utilization of used EVBs and the savings of remanufacturing; The 

third item is the reward-penalty given by the government; The fourth item represents the 

recovery cost and processing cost; The fifth item is the cost of transporting used EVBs 

between facilities; Constraints Eqs.(9) ~ (22) are the balance constraints which confirm 

the uniformity of input flow and output flow at each facility; Constraints Eqs.(23) ~ (27) 

assure that the flows to and from each facility could not exceed its capacity; Constraint 

Eq.(28) is the positive variable constraints. 

4. Solution Method 

Since the second-stage model involves the analysis of fuzzy parameters we first use fuzzy 

programming method to transform the SMIP model into a deterministic MIP model. 

Then, a Benders Decomposition (BD) algorithm is applied to solve the model. 

4.1. Model Transformation 

According to [10], the above model with fuzzy numbers can be transformed into two 

equivalent forms, namely linear lower approximation model (LLAM) and linear upper 

approximation model (LUAM), which are significantly easier to solve. 

Since there are fuzzy variables in the objective functions and constraints, we used 

the expected value and operator and chance constrained operator based on Me to deal 

with the objective functions and constraints, respectively.  

Assume that �̃�� = @���, ���d , ���d A  are positive triangular fuzzy variables, the expected 

value of the objective function can be computed as   

e fg �̃��h ���∈# i = g j(1 − k)
2 @��� − ���d A + ���2 + k2 @��� + ���d Am ���∈#           (29) 

Where k is the optimistic-pessimistic parameter. 

Therefore, the objective function Eq. (8) can be transformed into the following 

equation by using fuzzy random expected value method. 

?!@��, ��, ��, ��, ��A = 

   max{(�� − ��) ∑ ∑  
�!"#�∈#
∈" + ∆� ∑ ∑  �
!&"
∈"�∈& + P+ ∑ ∑  ��!&'�∈'�∈& +
 ∆�Q@∑ ∑  ��!&.
∈" + ∑ ∑  ��!'.
∈"�∈&�∈& A + ∑ ℎ�S�!�∈# − >∑ ∑ e(�̃�#) ��!$#�∈#�∈$ +
∑ ∑ e(�̃�%) ��!#%�∈%�∈# + ∑ ∑ e(�̃�&) ��!%&�∈&�∈% + ∑ ∑ e(�̃�F) ��!&F�∈F�∈& +
∑ ∑ e(�̃�&.) ��!&.�∈.�∈& + ∑ ∑ e(�̃�'.) ��!'.�∈.�∈' B −
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>∑ ∑ e(�̃
�)�∈# �
� 
�!"#
∈" + ∑ ∑ e(�̃��)��� ��!#$�∈$�∈� +
∑ ∑ e(�̃��)��� ��!$#�∈#�∈$ + ∑ ∑ e(�̃��)��� ��!#%�∈%�∈# + ∑ ∑ e(�̃��)�∈& ��� ��!%&�∈% +∑ ∑ e(�̃��)��� ��!&'�∈'  �∈& + ∑ ∑ e(�̃�
)��
 �
!&"
∈"�∈& +∑ ∑ e(�̃��)��� ��!&F�∈F�∈& + ∑ ∑ e(�̃��)��� ��!&.�∈.�∈& +
∑ ∑ e(�̃��)��� ��!'.�∈.�∈' + ∑ ∑ ∑ e(�̃�
)1∈2
∈" ��
 �
1!."2�∈. B }                 (30) 

In LLAM model, the constraints of Eqs.(16) ~ (18) with fuzzy numbers can be 

transformed as Eqs.(31) ~ (33), and Eqs.(34) ~ (36) in LUAM model. 

   ∑  �
!&"
∈" ≤ [� − q�41] ∑  ��!%&�∈%   ∀( ∈ +                                                                   (31) 

∑  ��!&.�∈. ≤ [�� − s�4�1] ∑  ��!%&�∈%    ∀( ∈ +                                                      (32) 

   ∑  ��!&F�∈F ≤ [�^−t�41̂] ∑  ��!%&�∈%   ∀( ∈ +                                                         (33) 

In LUAM model, the constraints of Eqs. (16) ~ (18) with fuzzy numbers can be 

transformed as Eqs. (34) ~ (36). 

         ∑  �
!&"
∈" ≤ [� + (1 − q�)�1] ∑  ��!%&�∈%   ∀( ∈ +                                            (34) 

         ∑  ��!&.�∈. ≤ [�� + (1 − s�)��1] ∑  ��!%&�∈%    ∀( ∈ +                                            (35) 

         ∑  ��!&F�∈F ≤ [�^ + (1−t�)�1̂] ∑  ��!%&�∈%   ∀( ∈ +                                               (36) 

It is necessary to mention that the above results were obtained based on the following 

parameters, 

λ = 0.5, 0.5 ≤ q� ≤ s� ≤ t� ≤ 1. 

Therefore, the second-stage model can be transformed into two deterministic models, 

such as LLAM model with an objective function Eq. (30) and constraints Eqs. (9) (15),  

(19)~(28) and (31)~(33), and LUAM model with an objective function Eq.(30) and 

constraints Eqs.(9) (15),  (19)~(28) and (34)~(36). 

4.2. Benders Decomposition (BD) Method 

BD is an efficient framework to solve a large-scale MIP model. It separates the problem 

into two related problems (a master problem and subproblem), these two problems are 

solved iteratively in a delayed-constraint-generation fashion and finally converge to a 

global optimal solution. 

The procedure of the BD algorithm is summarized as follows:  

Step 1: initialize yz = ∞, +z = +∞, 74� = ~; 

Step 2: solve the master problem and obtain solution ���, �̅�, ���, ��̅ and obtain value �
, then set +z = )4�{�
, +z}; 

Step 3: solve the subproblem, and obtain the optimal objective value �!, 
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if all subproblem are optimal, obtain the optimal value �! , add the optimality

Benders cut to the master problem, and yz = min {�*, yz}, calculate 78� = (yz −+z)/yz;

else

all the feasibility Benders cut to the master problem, go to Step 2;

Step 4: if 78� < ~, Stop, output the optimal value.

5. Numerical Experiments

In this section, we conduct three problems set with different sizes and each set include 

10 problem instances. We summarize the values of the parameters that determine the size

of our problem instances in Table 2. Note that K1 and K2 are constructed to investigate 

the impact of the number of scenarios on the performance of the solution methods, and 

K2 and K3 are constructed to illustrate the impact of other size-determining problem 

parameters. Our problem instances are generated based on the instances used by [11]. 

We coded the proposed solution methods in JAVA using CPLEX Concert Technology 

and executed the numerical experiments on an Intel Core i7 PC with3.10GHz processor 

and 16GB RAM. We use 0.1% optimality gap and 3-hour time limit as the termination 

conditions.

Table 2. Problem sets.

I J K L M N R Q A S
K1 8 5 3 4 2 3 3 4 5 50

K2 8 5 3 4 2 3 3 4 5 250

K3 20 10 5 6 2 4 2 3 5 250

Therefore, the optimal value of net profits of the total system is shown in Table 3.

Table 3. The optimal value of the problem sets.

K1 K2 K3
1 9435290862 2733911586 2710907444

2 9211177263 2620003588 2661028416

3 9629308934 2754895399 2826882003
4 9518217995 2643446029 2622872451

5 9236811276 2526208161 2655146645

6 9523898589 2821475222 2557095382
7 10689490829 2599435760 2599359153

8 9241658805 2632184998 2701345969

9 10409954171 2758411030 2799289892
10 10241622379 2746660933 2757610860

The above results show that the BD algorithm has a good convergence property and 

is very efficient in solving large-scale problem.
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