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Abstract. The major drawbacks of basic electronic components i.e., Vacuum Tubes 
used before the 1960s were a large size and the inability of these to be scaled down 
further. With the emphasis shifting to scaling down we came across the MOSFETs 
in single-gate configuration since the 1960s, they are utilized nowadays in the 
nanometer region for keeping the high-performance level but still, these single-gate 
configurations of MOSFETs suffer from different parameters such as coupling, 
interfacing, channel mobility, channel orientation, switching delay, latch-up and 
leakage current, short channel effects (DIBL, GIDL, subthreshold swing) and 
volume inversion and this has led to decrease in inversion charge, increase in 
leakage current and reduction in the drive current leads us to the exploration of the 
double-gate configuration of MOSFET and on further exploration it leads us to the 
novel and higher mobility channel materials such as Si1-xGex which can perform and 
even shows better results than prevailing single-gate MOSFETs. This paper analyses 
the different configurations of Si1-xGex for double-gate configuration of MOSFETs 
and its Future Applications. 
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1. Introduction 

Since the early 1930s research has been carried out to find the configuration that likely 

replaces Vacuum Tubes. As a result, in 1960 single-gate MOSFETs, and 1965 Moore’s 

Law came into existence [1]. The MOSFET shown in Figure 1 is a three-terminal 

voltage-controlled device working like a switch, either fully on at input drive or fully off 

at zero current by keeping the multiple of supply voltage or itself [2]. Moore’s Law 

shown in Figure 2 elaborates that for a particular area, the number of transistors doubles 

for nearly 18 months, this leads to acclimation of the multiple numbers of transistors in 

the defined area by continuously decreasing dimensions (scaling) [3-7]. It is done to 

accommodate performance with minimum power consumption and power dissipation. 
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Figure 1. Structure of Single-Gate MOSFET. 

 

Figure 2. Interpretation of Moore’s Law. 

While doing so, we came across some limitations in form of Short Channel Effects 

(SCE), summarized in Table 1 [8-11]. To overcome them, new configuration double-

gate MOSFETs shown in Figure 3 came into existence. Here, two gates are available on 

opposite sides, separated by the gate oxide operating simultaneously. This gives better 

current in the drain and ensures gate control over the channel and gate coupling [12-14].  

The main motivation and purpose behind this research work is 

 To provide the solution to problems associated with scaling. 

 To minimize the limitations of single-gate MOSFETs. 

This has guided us to define our problem statement as 

 How to conserve drive current? 

 How to depreciate the leakage current? 

Thus, for the problem statement defined above our research focuses on 

 Understanding the device physics.  

 Analyzing the behavior of the device through simulation. 

The main objectives of our proposed research work are 

 To review the conventional work done in the field of double-gate MOSFET 

configurations simulated so far. 

 To analyze the device physics of different configurations of Si1-xGex double 

gate n-MOSFET and the behavior of the device through simulation. 

 To examine the Id-Vg characteristics, Id-Vd characteristics, and performance 

parameters DIBL, MMCR, Subthreshold Slope, and Threshold Voltage.  
 

Table 1. Major Short Channel Effects 

  Short Channel Effects Reason Of Existence 

DIBL Drain Induced Barrier Lowering.  
This comes into effect when we 
increase drain voltage to the 
point that there is a decrease in 
the potential barrier of the 
channel. This leads to the 
movement of electrons between 
the source and drain without any 
resistance which too when the 
gate voltage is lower than the 
threshold voltage.
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Subthreshold Leakage Current This comes into the effect when 
came into effect when a weak 
inversion conduction region is 
generated in the presence of a 
hot-electron effect because of 
which when the gate voltage is 
less in comparison to the 
threshold voltage, diffusion 
current flow takes place between 
drain and source.

 

Figure 3. Structure of Double-Gate MOSFET. 

2. Literature Review 

The different configurations of Si1-xGex utilized by researchers so far provide a balance 

between electron mobility and hole mobility of Ge are summarized in Table 2. 

Table 2. Si1-xGex configurations, Gate configurations, and their applications 

Si1-xGex and Gate 

Configuration 

Reference Applications 

Si0.2Ge0.8 [15-16] Thermoelectric Applications 

Schottky Barrier [17] Leakage Current Improving 
Applications 

SiGe Shell [18] Ultrathin P-FinFET Applications 
Sub 100 nm Tunnel FET [19] DRAM Applications 
Heterojunction Tunnel Model [20] Optimize Tunnel Logic 

Inverter Applications 
Negative Capacitance [21] Tradeoffs in Energy Delay Low 

Power Switching Applications 
Heterogeneous Tunnel Dielectric  [22] Device Reliability Applications 
Gate Surrounding Channel [23] 6-Transistor SRAM Cell 

Applications
Vertical Slit [24] 3-DM Integration Applications 
Fully Depleted SOI [25] Radio Frequency Applications 
SiGe [26] Enhancing Speed and High- 

Volume Optical Interconnect 
Applications

Si0.6Ge0.4  

 

[27] Step-FinFET and Inverter  
Applications 

Gate All-Around [28] SCE Improvement Applications 
Double-Gate [29] High Pass Filter Applications 
Double-Gate [30] Core Insulator Applications 
Double-Gate [31] Fully Depleted SOI Applications 
Dual-Gate [32] Source Follower Applications 
Memristor [33] Reducing Power Consumption 

and Increasing IC Performance 
Applications.
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3. Results and Discussion 

We have studied, compared, and analyzed the different configurations and summarized 

the results in Table 3, Table 4, Table 5, Figure 4, and Figure 5 for Si1-xGex configurations. 

Additionally, we have compared results with pre-existed configurations from papers [15 

and 16] and it possesses some advantages as well as some disadvantages listed below. 

The results obtained show that for Si1-xGex double-gate MOSFET performs better in 

comparison to single MOSFET. Its advantages are 
 Dissipates less power. 

 Dynamic control of voltage. 

 Gate electrostatic control in conducting channel is better. 

 Large degree of reliability. 

Its disadvantages are 

 Subthreshold Swing is higher. 

 Leakage Current is higher in the subthreshold region. 
Table 3. Different Configurations of Si1-xGex used 

Configurations of Si1-xGex             Single Gate               Double Gate 

Si Utilized Utilized
Si0.2Ge0.8 Utilized Utilized
Si0.6Ge0.4 Utilized Utilized

Table 4. Single-Gate MOSFET using Si1-xGex and Double-Gate MOSFET using Si1-xGex 

Performance Parameters Single Gate MOSFET using Si1-

xGex [16] 

Double Gate MOSFET using 

Si1-xGex 

Bandgap of Channel Material Multiple of 1.12 eV Multiple of 0.66 eV 
Drive Current Delay In the Range of 0.1 ns In the Range of 0.05 ns 
Electric Field 3*105 Vcm-1 105 Vcm-1 

Electron Mobility of Channel Magnitude Order of 1500 cm2V-1s-1 Magnitude Order of 3420 cm2V-1s-1 
Hole Mobility of Channel Magnitude Order of 450 cm2V-1s-1 Magnitude Order of 1610 cm2V-1s-1 
Off-State Leakage Current More than 1 nAμm-1 Less than 1 nAμm-1 
Power Dissipated In Between 0.5 Js-1 and 0.7 Js-1 In Between 0.1 Js-1and 0.3 Js-1 
Threshold Voltage In Between 350 mV and 450 mV In Between 100 mV and 300 mV 

Table 5. Double-Gate Configuration for pure Si and for Si1-xGex (x = 0.8 i.e., Si0.2Ge0.8) 

Performance Parameters Double-Gate using pure Si [15] Double-Gate using Si1-xGex (x = 

0.8 i.e., Si0.2Ge0.8) 

DIBL 80 mdB 66.66 mdB
MMCR 1.3*108 2.7*108

Subthreshold Swing 82.23 mV/dB 86.84 mV/dB
Threshold Voltage In Between 100 mV and 300 mV In Between 100 mV and 300 mV 

 

Figure 4. Comparing Id-Vg characteristics of double-gate configuration for pure Si and double-gate 
configuration for Si1-xGex. 
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Figure 5. Comparing Id-Vd characteristics of double-gate configuration for pure Si and double-gate 
configuration for Si1-xGex. 

4. Conclusion 

We measured certain performance parameters in the previous section and measured 

values are defined already in Table 5. From this analysis, one can conclude that Si1-xGex 

 Has a very encouraging future in form of capabilities i.e., high carrier mobility, 

high speed, low power consumption, and low power dissipation. 

 Can replace Si in the coming decade once performance parameters are taken 

into consideration. 

 Meets all the provisions for sustaining the ICs design in the CMOS circuit 

designing, especially in the electronics and communication industry. 
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