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Abstract. In the last decade, neural networks have become exceptionally powerful. 

But there is a huge difference in practical achievement and theoretical understanding. 

One such underdeveloped theoretical concept is generalization of the deep nets. 

Many studies have been conducted to develop a better understanding of 

generalization in deep neural networks. In this paper a survey of studies has been 

done for exploring the generalization concept. The contradiction and overlapping 

with the statistical learning theory, conventional wisdom and unconventional results 

has also been highlighted. A sound understanding of generalization will enable 

researchers to model more cost effective and powerful networks. Demystifying 

generalization will also result in more informed architecture design decisions 

Keywords. Deep Neural Networks, Generalization, Loss Landscape, Regularization, 

Overparameterized Networks. 

1. Introduction 

Deep neural networks try to approximate a function F* that can appropriately represent 

the data samples. The modern neural network algorithms can easily match human level 

precision in tasks such as detection and classification. The objective of any ML algorithm 

is to make a prediction on unseen data. While training data is available for the model to 

learn and approximate the function F*, test data is not seen by the algorithm/model. For 

this reason, there is often a gap between the training error (TE) and testing error (TE’). 

An absolute difference between training error (TE) and testing error (TE’) is called 

generalization error (GE). GE = | TE – TE' |  

There are many motivations to study generalization. Following are some mentioned 

reasons. The fundamental reasons for generalization of deep neural networks are not 

known [12]. Given a network and network parameters can one predict the maximum and 

minimum generalization gap? Statistical learning theory, finite sample expressivity, 

universal approximation theorem [12, 13] provides some loose bounds but fails to 

capture practicality in the context of deep learning. Developing theoretical data 

dependent generalization bounds, independent from all other network parameters is also 

a challenge. VC Dimensions, PAC Learning, Rademacher Complexity provide an initial 

generalization framework for the traditional ML algorithms. 
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2. Factors affecting the Generalization 

There are multiple components that may influence the generalization capability of deep 

neural networks.  Data sets, distribution of samples in data sets, the nature of loss 

function, optimizers, model architecture, regularization, stability, complexity of network, 

capacity control, robustness, activation, etc. The degree to which each factor contributes 

to generalization is highly debatable, and less understood. In [12], authors challenge the 

fundamental understanding about the learnability of overparameterized networks. They 

show that modern architectures with SGD can fit partially corrupted labels, fully 

corrupted labels, partially corrupted images and fully random pixels. Most theoretical 

concepts derived from statistical learning theory do not seem to justify the mysterious 

behavior of deep neural networks.  [17] suggests that the disconnect between the 

mysterious behavior of deep nets and statistical learning theory is just a case of 

misinterpretation. However, most theoretical bounds are too loose to be applied in real 

life scenarios. [2,9,14] present some advances real life applications. 

2.1. Learnability, Data and Architectures 

Most modern neural networks are overparameterized, where the total count of 

training data sample points is not dependent on the number of parameters. VC dimension 

learning theory cannot be used to study such settings because the VC dimensions grow 

with the number of parameters. In [12], authors further show that the overparameterized 

networks can memorize completely random noise, while being able to generalize to true 

data. They suggest that randomizing data is a data transformation problem and does not 

affect the learning algorithm. In such settings the notion of stability derived from PAC 

bayes learning has limited context. Thus, a theorem independent from such 

constraints/assumptions about network design, parameters and data distributions is more 

desirable. 

Universal approximation theorem defines upper bounds in the approximation 

capability of a 2-layered network. Any continuous and bounded function can be modeled 

using a 2-layered network having nonlinear activation. In [13], authors argued with 

experiments that size of the network may affect the capacity of neural networks, but size 

is not the primary form of capacity control. Further suggesting that there might be a 

different form of capacity control altogether. In [15], authors explore an interesting 

question that “are all layers created equal?” They conclude each layer can be categorized 

into two categories, i.e., robust and critical. Robust layer hardly changes throughout the 

entire process of training. They also suggest that robust layers can be altogether 

eliminated implying there is minimal to no contribution in learning and generalization. 

They conclude with experimental evidence that deep nets automatically adjust their 

capacity; when big networks are trained on easy tasks, only a few layers play a critical 

role. Their work is a strong indication that mere parameter counting is not sufficient to 

develop generalization theory.  

2.2. Geometric Nature of Loss function and Optimizers 

Training a neural loss function is NP hard. The shape of the loss function is often non-

convex and high dimensional. Local minima are very likely to have error values near to 

global minima [3]. For large sized networks most, local minima are equivalent and 

perform equally good, it is hard to find bad local minima for small size networks and this 
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difficulty increases with network size and looking for global minima is not recommended 

and may lead to overfitting [4]. In contrast, [5] introduces Entropy-SGD that favors wide 

valleys situated far deep in the loss-landscape having much lesser empirical loss value 

compared to the local minima found by SGD, while comparing favorably with most other 

algorithms in terms of generalization 

Studies suggest that a small training batch with SGD optimizer generates flat 

minimizers which generalize well but a large training batch with SGD generate sharp 

minima that fails to generalize [6]. In [7] authors experimentally verify that large batches 

with SGD converge to sharp minima that lead to a bad generalization. However, it is 

possible to achieve better generalization with large batch sizes. [8] suggests several 

techniques to improve the generalization gap while training with large batches. However, 

contrary to the former studies,[9] argues that the notion of flatness and sharpness cannot 

directly explain generalization. [9] agrees that the algorithms that generalize tend to be 

flatter at minima. However, flat minima generalizes better than sharp minima cannot be 

universally true. And so flat minima are not the fundamental reason for generalization. 

2.3. Regularization leads to generalization 

Any modification with an intent to bring down the generalization error, but training error, 

is regularization. One or more regularization techniques can be combined to achieve 

better results. Data Augmentation is a regularization technique that requires training on 

more data. Creating some fake data may help. Rotating, scaling and translating has also 

been observed to be useful. Dropout is a widely used and cost-efficient alternative to 

bagging. However, dropout does not yield significant performance gains when less 

training data is available. Early Stopping is arguably the most simple and effective 

regularization technique. 

While popular regularization techniques might help in generalization, they are not 

the fundamental reason for generalization. [12] suggests that greater generalization can 

be achieved by modifying the network architecture. By increasing the number of hidden 

units, generalization capability of the network is improved even when the training error 

does not decrease [13]. This might indicate how implicit regularization can be helpful 

and might be better than explicit regularization techniques. 

3. Why more study on generalization is needed? 

Question 1: How can overparameterized networks generalize? One major dispute is the 

learnability of over parameterised networks as shown by [12] Over parameterised 

networks, as suggested by conventional wisdom and statistical learning theory should 

fail to generalize. Observations of Zhang et al., [12] challenges the conventional wisdom 

about deep learning and principles of statistical learning theory. [17] addresses this 

problem and suggests that the observations of [12] do not contradict the principles of 

statistical learning theory; the conflict arises due to misinterpretation. Assume p:= “small 

complexity” and q:= “small generalization”; statistical learning theory suggests p => q. 

However, this does not mean q => p. Thus, it is possible to have low generalization error 

despite large complexity of hypothesis, instability and non-robustness of learning 

algorithm or existence of sharp minima. [17] further suggests that small capacity, low 

complexity, flat minimum, stability and robustness and is not fundamental to 
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generalization and this phenomenon is not specific to deep nets, overparameterized linear 

models can generalize too.  

Question 2: How, a network that can fit random noise, generalize to true labels?  [12] 

suggests that randomization of data is only data transformation and does not affect 

learning algorithms. This further suggests the need to develop theoretical bounds 

independent from data distribution and parameter counting. In [21], authors numerically 

evaluated a generalization error bound from the PAC-Bayes framework showing that it 

can forecast the difference in generalization capability of the networks trained on true 

labels vs the networks trained on random labels. 

Question 3: What architecture generalizes better? Zhang [12] highlighted the 

question why some networks can generalize better than others. Modification in network 

architecture can achieve better generalization than explicit regularizers. Residual 

Networks [22] achieves better generalization than simple feed forward networks. Deeper 

network achieves better generalization when compared to shallow networks. 

Question 4: loss landscape? Loss landscape is very crucial in the study of 

generalization, section 2.2 discusses this in detail. The notion of flatness and sharpness 

is difficult to ignore while studying generalization. However, flatness and sharpness, as 

is, cannot be universally used to make an inference about generalization [9]. 

Question 5: Does batch size affect generalization? Yes. Small batch with SGD 

produces flat minimizes while large batch size with SGD produces sharp minima that 

fails to generalize [6,7]. However, it is possible to achieve good generalization with a 

large batch size [8,10]. Generally, algorithms that generalize tend to be flatter at minima, 

however, this is not universally true [9]. So, batch size is not fundamental to 

generalization. However, batch normalization can be used as a regularization technique 

as and when needed. 

Question 6: What can affect generalization? Small capacity, low complexity, flat 

minimum, stability and robustness is not fundamental to generalization, although either 

can be sufficient. [17]. 

Table 1. Critical points in the literature. Studies performed, novel approaches, observations and critical 

analysis of the literature.  

Objective Observation 
Dispute & settlements (Critical 

Analysis) 

[3] Introduce a novel 

second order 

optimization technique 

Global minimum will most likely 

have error values close to the local 

minima. 

Local minima are good. 

 

[4] Compare various 

minima 

It’s hard to find a bad local minimum. 

For large sized networks most, local 

minima are equivalent and perform 

equally good.

looking for global minima may lead 

to overfitting. 

 

[5] Introduce Entropy-

SGD 

 

Entropy-SGD can find wide and 

deeper valleys with lower empirical 

loss (compared to local minima 

achieved by SGD)

Contradicts the observation of [4], 

i.e., the existence of multiple local 

minima with similar loss.  

Relate batch size with 

generalization gap [6] 

A small batch size with SGD 

optimizer produces flat minimizers 

which generalize well.

Large batch size with SGD 

produces sharp minima which fails 

to generalize well

Experimental 

Validated of [6] by [7] 

Large batches trained with SGD 

converge to sharp minima, leading to 

high generalization error.

Support the claims of [6] 
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[8] Introduced Ghost 

batch normalization 

Generalization gap arises from small 

iterations of updates and not from the 

batch size. 

Suggests training methods to 

achieve good generalization with 

large batch size. Counter the claims 

of [6, 7] 

Generalization with 

large batch size [10] 

Large batch cause optimization 

difficulty but when addressed, trained 

networks can achieve good 

generalization

Counter the claims of [6, 7] 

 

 

[11] Propose Big 

Batch SGD 

By choosing larger batches with less 

noise, it is possible to maintain 

descent directions on each iteration 

and uphold fast convergence. 

Counter the claims of [6, 7] 

 

 

Generalization and 

geometry [9] 

Algorithms that generalize tend to be 

flatter at minima. 

Concept of flatness and sharpness 

isn’t enough to describe the 

generalization capability of deep nets.

Flat minima generalities better than 

sharp minima. However, this cannot 

be universally true. 

 

Loss landscape of 

networks [16] 

Skip connection promotes flat 

minimizers.  

It prevents the transition into chaotic 

behavior. 

Resnet like structures outperform 

simple feed forward networks. 

Capacity Control for 

neural networks [13] 

Size of the network is not the main 

reason for its expressive power.  

Highlights the limitations of VC 

Dimension.  

[12] Explores what 

leads to generalization  

Deep nets can fit completely random 

noise (huge capacity). 

Despite huge model capacity, deep 

nets can generalize.  

Small generalization improvement 

due to regularizations

Reasons for generalizations are not 

known. Better results can be 

achieved by modifying the network 

design. Regularization is not the 

fundamental reason for 

generalization.

[15] Study the 

contribution of 

individual layer in 

overall network

Critical layers contribute to 

generalizations. 

 

Not all layers are equal, some layers 

can be all together removed. Deep 

nets automatically adjust their 

capacity.

[17] Study the disputes 

and questions raised 

by [12] 

Small capacity, low complexity, flat 

minimum, stability and robustness is 

not necessary for generalizations. 

But either one is sufficient.

Observations of [12] are in 

accordance with statistical learning 

and it's a matter of interpretations 

[18] Study 

generalization under 

various circumstances 

For overparameterized networks, 

complexity measures based on total 

number of parameters cannot explain 

generalization. Sharpness is not 

sufficient to explain generalization.

Partly address the dispute raised by 

[12] Sharpness combined with PAC 

bayes analysis and weight norms 

can be used to obtain complexity 

measures.

[1] Study over 

parameterized 

networks 

Existing complexity measures are 

proportional to the number of hidden 

units 

Complexity measures does not 

sufficiently explain generalization 

in over parameterized networks 

[20] Study over 

parameterized 

networks 

Over parameterization helps in 

optimization. Weight-decay helps in 

generalization. 

Over-parameterization allows to 

find global optima, when combined 

with weight decay, the solution also 

generalizes well.

 

4. Conclusion 

Some modern deep neural network architectures may have up to a billion parameters and 

are massively resource and cost hungry. Under such scenarios understanding and 

studying subjects like generalization becomes essential. The paper has attempted to 
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summarize the generalization theory of deep neural networks, it also highlights the gaps 

in the theory and present the critical analysis of the same. It is observed that while many 

studies explore the reasons for generalization, the elementary reason for generalization 

in deep neural networks remain undiscovered. The contradiction in the literature is also 

discussed. Few unanswered questions have been identified that can act as potential future 

research topics. Answering generalization will enable researchers to model the deep net 

architectures with precision and make more informed decisions. 

References 

[1]  Neyshabur B, Li Z, Bhojanapalli S, LeCun Y, Srebro N. Towards Understanding the Role of Over-

Parametrization in Generalization of Neural Networks. InInternational Conference on Learning 

Representations (ICLR) 2019 Jan.  

[2]  Nainvarapu, R., Tummala, R. B., & Singh, M. K. (2022). A Slant Transform and Diagonal Laplacian 

Based Fusion Algorithm for Visual Sensor Network Applications. In High Performance Computing and 

Networking (pp. 181-191). Springer, Singapore.  

[3]  Dauphin YN, Pascanu R, Gulcehre C, Cho K, Ganguli S, Bengio Y. Identifying and attacking the saddle 

point problem in high-dimensional non-convex optimization. Advances in neural information processing 

systems. 2014;27. 

[4]  Choromanska A, Henaff M, Mathieu M, Arous GB, LeCun Y. The loss surfaces of multilayer networks. 

InArtificial intelligence and statistics 2015 Feb 21 (pp. 192-204). PMLR.  

[5]  Chaudhari P, Choromanska A, Soatto S, LeCun Y, Baldassi C, Borgs C, Chayes J, Sagun L, Zecchina R. 

Entropy-sgd: Biasing gradient descent into wide valleys. Journal of Statistical Mechanics: Theory and 

Experiment. 2019 Dec 20;2019(12):124018. 

[6]  Hochreiter S, Schmidhuber J. Flat minima. Neural computation. 1997 Jan 1;9(1):1-42.  

[7]  Keskar NS, Mudigere D, Nocedal J, Smelyanskiy M, Tang PT. On large-batch training for deep learning: 

Generalization gap and sharp minima. arXiv preprint arXiv:1609.04836. 2016 Sep 15. 

[8]  Hoffer E, Hubara I, Soudry D. Train longer, generalize better: closing the generalization gap in large 

batch training of neural networks. Advances in neural information processing systems. 2017;30. 

[9]  Dinh L, Pascanu R, Bengio S, Bengio Y. Sharp minima can generalize for deep nets. InInternational 

Conference on Machine Learning 2017 Jul 17 (pp. 1019-1028). PMLR. 

[10] Goyal P, Dollár P, Girshick R, Noordhuis P, Wesolowski L, Kyrola A, Tulloch A, Jia Y, He K. Accurate, 

large minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677. 2017. 

[11] De S, Yadav A, Jacobs D, Goldstein T. Automated inference with adaptive batches. InArtificial 

Intelligence and Statistics 2017 Apr 10 (pp. 1504-1513). PMLR.  

[12] Zhang C, Bengio S, Hardt M, Recht B, Vinyals O. Understanding deep learning (still) requires rethinking 

generalization. Communications of the ACM. 2021 Feb 22;64(3):107-15. 

[13] Neyshabur B, Tomioka R, Srebro N. In search of the real inductive bias: On the role of implicit 

regularization in deep learning. arXiv preprint arXiv:1412.6614. 2014 Dec 20.  

[14] Padma, U., Jagadish, S., & Singh, M. K. (2021). Recognition of plant’s leaf infection by image processing 

approach. Materials Today: Proceedings. 

[15] Zhang C, Bengio S, Singer Y. Are all layers created equal? arXiv preprint arXiv:1902.01996 (2019).  

[16] Li H, Xu Z, Taylor G, Studer C, Goldstein T. Visualizing the loss landscape of neural nets. Advances in 

neural information processing systems. 2018;31. 

[17] Kawaguchi K, Kaelbling LP, Bengio Y. Generalization in deep learning. arXiv preprint 

arXiv:1710.05468. 2017.  

[18] Neyshabur B, Bhojanapalli S, McAllester D, Srebro N. Exploring generalization in deep learning. 

Advances in neural information processing systems. 2017;30. 

[19] Satya, P. M., Jagadish, S., Satyanarayana, V., & Singh, M. K. (2021, October). Stripe Noise Removal 

from Remote Sensing Images. In 2021 6th International Conference on Signal Processing, Computing 

and Control (ISPCC) (pp. 233-236). IEEE. 

[20] Du S, Lee J. On the power of over-parametrization in neural networks with quadratic activation. In 

International conference on machine learning 2018 Jul 3 (pp. 1329-1338). PMLR.  

[21] Dziugaite GK, Roy DM. Computing nonvacuous generalization bounds for deep (stochastic) neural 

networks with many more parameters than training data. arXiv preprint arXiv:1703.11008. 2017. 

[22] Frei S, Cao Y, Gu Q. Algorithm-dependent generalization bounds for overparameterized deep residual 

networks. Advances in neural information processing systems. 2019;32.  

E. Pandey and S. Kumar / Gaps in Generalization Theory of Neural Networks 301


