

Design of UDS Protocol in an Automotive

Electronic Control Unit

1Madhumati Shridhar Kuntoji, 2Venkatanarasimharao Medam, 3Veena Devi S.V

RV College of Engineering Bangalore, Karnataka madhumatk.lcs20@rvce.edu.in
Chief of Advance Engineering, Research and Development (R&D), Greaves Electric Mobility

Bangalore, Karnataka, narasimha.mv@amperevehicles.com

Abstract. In automotive, diagnostics is manditorily required to be performed on

every ECU(Electronic Control Unit) to ensure that there is no any problem with

the electronically controlled components of the vehicle. Today ECU is used in

almost every vehicle as an electronic device. Recent automobiles consist of more

than 80 ECU for different tasks such that every ECU or group of ECU will

perform their dedicated functions. This paper explains about configuration of clock

modules for microcontroller based on motor controller applications and also deals

with the implementation of UDS (Unified Diagnostic Service) protocol according

to the standard ISO 14229-1 which is being used by diagnostic system to

communicate or to transfer the data between client & server.

Keywords. Electronic Control Unit (ECU), Unified Diagnostic Service (UDS),

Negative Response Code (NRC), Phase Locked Loop(PLL), Controller Area

Network (CAN), Diagnostic Trouble Codes (DTCs), Open System Interconnection

(OSI).

1. Introduction

Diagnostic technology is important part in vehicle industry. The increasing demand
in application of embedded electronics, electrical and mechanical components in
vehicles brings the need to use diagnostic systems for purpose of design, operations and
control of several parameters as well as industrial developments. A diagnostic system
must therefore contain a standard protocol for connecting different diagnostic services,
various interfacing tools in which testers, repairers use them for checking ECUs to get
complete diagnosis information. Diagnostic system verifies, determines and classifies
symptoms in which they aim to get an overall picture in finding out the basic cause of a
problem in any vehicle which are running today. The improvement, detection,
verification and communication strategies applied to irregular operations of overall
system is monitored by electrical and electronic devices. Ultimately the purpose of
diagnostic protocol is to identify the basic cause of abnormal operation so that particular
repair can be done. Recent vehicles are supplied with a diagnostic interface, which made
it possible to connect directly to a diagnostic tool to communication system of an ECU
present in any vehicle and able to diagnose immediately[1].

UDS is one of the diagnostic communication protocol that used in the automotive
electronic control unit. This protocol combines various standards like 1SO 14230-3, ISO
15765 and defined in detail by International organization for standardization and

Recent Developments in Electronics and Communication Systems
KVS Ramachandra Murthy et al. (Eds.)
© 2023 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/ATDE221266

255

describes few set of conversions used for diagnostic communication between a
diagnostic device and an ECU in the vehicle. So, it is important to configure clock
modules which are required for motor controller design and further UDS protocol
implementation is analyzed. Generally microcontroller needs clock to manage the
operations and trigger their command/timings which is set by the program/user. Single
microcontroller requires clock source because memory bus, peripherals clocks, timers,
counters which are present all over inside the microcontroller that regulate speed at
which processor executes various instructions as per requirements in S32K144
Evaluation Board.

S32K144 EVB is a 32-bit general purpose MCU family and dedicated for
automotive and wide range of industrial applications. It runs at 112 MHz clock
frequency and supports four clock oscillators and one Phase locked loop (PLL). First the
configuration of clock modules for the microcontroller, which is based on motor
controller application requirements is done.

2. SYSTEM Overview

Engine Control Unit is a system which controls various parameters of an internal
combustion engine.

Figure 1: System Overview [2].

Application software inside an ECU is classified into two sections control system
and diagnostic system as shown in Figure 1.Control system has capability to generate
diagnostic trouble codes (DTCs) that provide all data of an Engine. Diagnostic system
provides complete information of a DTC and control system is for further rectifying
purposes. Each diagnostic system uses a different set of DTCs. Hence, UDS protocol is
designed with ability to support numerous kinds of DTCs. As the engine runs various
sensors check the engines parameters and when a fault is established then DTC is
generated in the ECU, same problem can be resolved[2].

3. DIAGNOSIS OF ELECTRONIC CONTROL UNIT

In Electronic control unit, all the inputs and outputs need self-diagnosis ability.
Traditional engines which do not have self-diagnosis capability become outdated. Inputs
and outputs of an ECU are individually being monitored by controller in the system.
Automotive, systems are managed by electrical and electronics components with system
software that are written as per the standards of automotive embedded system
requirements. Figure 2 represents the block diagram of an engine electronic control unit

M. Shridhar Kuntoji et al. / Design of UDS Protocol in an Automotive Electronic Control Unit256

which is used to manage and control the automotive system. It contains analog and
digital input/output signals, PWM inputs conditioning and outputs, Injection Drivers
which enables interaction between other parts of the system. ECUs are connected to
various sensors to get required signals corresponding to the different desired parameters
of engine. ECU has full control over the combustion of fuel, cooling system and
emission systems. Development of an ECU involves both hardware and software
required to perform dedicated functions.

Figure 2. Block diagram of an Engine ECU

4. UDS DIAGNOSTIC SERVICES

Diagnostic Services are used to diagnose communication services such as data
transmission, Input/Output operations and remote activation of routine upload/download
the operations. Some certain frame format is to be followed to establish a proper
communication between client and server. This protocol is used to diagnose errors and
reprogram the electronic control unit. UDS works on several operating sessions, that are
changed using diagnostic session control based on the active session. The commands in
UDS are divided into six groups according to their functionalities and Service Identifier
is represented as SID as shown in Table 1.

5. CLIENT AND SERVER BEHAVIOUR MODEL

Diagnostic Services can be diagnostic communication management requests,
security/authentication access, data requests, fault code requests, IO reprogramming, etc.
From Figure 3, Service Identifier is SID +data (Request) which is sent from client which
acts as a tester to ECU which acts as a Server. SID +40 +Data (positive response). SID +
40 hex (Service Identifier is first byte of request). 7F SID NRC (negative response code)
is negative response from server to client. Suppressed response is initiated by either
client set bit suppress Indication Bit in sub-function byte or server handling a
functionally addressed request. For all services using a sub-function byte, client sets a
bit 7 of the sub function byte to signal that no response is necessary if the response is
positive and bit is known as suppress PosRspMsg Indication Bit. When a request is sent
to server it responds positively or negatively. If response is positive, tester suppresses
response because as it measures inappropriate. This can be done by setting 1st bit to 1 in
sub-function byte and negative responses cannot be suppressed. Left over 7 bits is used

M. Shridhar Kuntoji et al. / Design of UDS Protocol in an Automotive Electronic Control Unit 257

to describe up to 128 sub-function values. For example, when reading the DTC data
through SID 0x19 (Read Diagnostic Information), sub-function is used to control.

Table 1. UDS Diagnostic services

Figure 3: Request and Response
behaviour between Client and Server.

Electronic control unit responds positively to an UDS request, then response frame is
designed with related elements same as request frame. For example, positive response to
a service 0x22 request contains response SID 0x62 (0x22 + 0x40) and 2-byte Data by
Identifier, which is followed by the actual data payload for requested data identifier. It is
a core component of building out ECU diagnostics and able to troubleshoot a
malfunctioning ECU. Sometimes an ECU provides the negative response to an unified
diagnostic service request only if the service is not supported to it.

6. WORK FLOW

Before UDS implementation, it is very necessary to configure clock modules for

microcontroller based on motor controller applications. Clock configuration is the basic

parameter which is must to configure in every electronic devices. In order to control the

flow of data between the various building blocks of the microcontroller, one needs a

clock. So, clock is needed to manage every operation of the microcontroller and clock

circuit determines the speed in which microcontroller operates.

M. Shridhar Kuntoji et al. / Design of UDS Protocol in an Automotive Electronic Control Unit258

A. Configuration of clock modules and requirements

Clock is a periodic signal which oscillates between a high
and low state and manage to synchronize every action of all digital circuits and every
clock signals are produced by clock generator. Clock source frequencies are summarized
in Table 2. Dividers for the System Clock, Core Clock, Bus Clock and Flash Clock are
first initialized before moving to another clock. System Clock Generator module
controls the clock source which includes internal references, external crystals and
external clocks.

Table 2: S32K144 Clock source and frequencies.

Sl. No Clock source Frequency

1 FIRC 48 MHz

2 SIRC 2-8 MHz

3 LPO 128 MHz

4 SPLL 90-160 MHz

5 SOSC Between XTAL & XTAL

6 XTAL 4-8 MHz & 8-40 MHz

7 EXTAL Upto 50 MHz

Two sample clocks are basically needed for the initialization of functions. System clock
initialization is for configuring the oscillators and initial peripheral clock generator is for
providing sources or dividers to the auxiliary clocks. First SOSC is initialized to 8MHz.
SOSCDIV1 & SOSCDIV2 = 1 configuring XTAL oscillator for low power. Oscillator
clock monitor disabled, system oscillator output clock disabled, system oscillator
disabled in VLP modes whereas system oscillator disabled in stop modes.

Clock Source = 6 (SPLL_DIV2 CLK) (1)

Clock source is configured and is represented in equation 1. Configuring ports and
initializing system oscillator for 8 MHz crystal. Registers control in which System clock
generator is preferred then ported as clock out. System phase locked loop is clock source
chosen from the source bitfield of the register therefore it is initialized to 8MHz.
Ensuring SPLLCSR unlocked, SPLL(System phase locked loop) clock monitor if
enabled and SPLL clock monitor disabled in stop modes and enabling SPLL = 1,
whereas system clock source is enabled, whereas SPLLEN =1. Wait for SPLL valid and
SIRDIV1_CLK and SIRDIV_2 = 8MHz. Changing to normal mode with 8MHz SOSC
and SPLL of 80MHz, by selecting PLL as a clock source. DIVCORE =1 which is
divided by 2 and Core clock=160/2 MHz = 80MHz. DIVBUS = 1, divided by 2, bus
clock = 40MHz, DIVSLOW = 2, divided by 2, SCG(system clock generator) slow Flash
clock = 26 2/3 MHz.

Implementation of UDS Protocol

This section deals with the implementation details of UDS protocol which is the only

application layer in OSI (Open Systems Interconnection) model and takes input from

CAN (Controller Area Network), a communication channel then connects CAN bus

interface to OBD part of a vehicle and sends unified diagnostic service requests to it. It

processes data that is stored in the message buffers and protocol will process only when

it completely receives the message in a buffer to ensure correctness of the request.

M. Shridhar Kuntoji et al. / Design of UDS Protocol in an Automotive Electronic Control Unit 259

Server reacts to the request and sends a respond message. UDS client is a tester that is

connected to a vehicle diagnostic port and referred to as an electronic control unit and

UDS services for boot flashing is shown in Figure 4.
Diagnostic session control programming session. (10 02) is programming session which
is managed to upload the software. Extended Diagnostic Session is used to unlock
further diagnostic functions. Safety system diagnostic session to test every safety-critical
diagnostic tasks. All security-critical services are enabled by security access. In Routine
control, a service is initiated in start-message. Running service is interrupted at any time
with stop message. Downloading new software or additional data into control unit is
done using Request Download and also involved in uploading and downloading of
information. Using Transfer Exit service, a data transmission is completed. ECU reset is
used to restart the control unit. Depending upon control unit hardware and interface,
various kinds of reset is used such as Hard Reset, which simulates the shutdown of
power supply. Key off on reset creates drain and turn on ignition with key and Soft
Reset which permits the initialization of the few program units Negative Response
Message is generally a three-byte message and has a negative response service identifier
(0x7F) as a first byte, original SID as taken as a second byte and third byte is response
code. UDS standard partially specifies response codes, if server realizes that it is not
possible to perform requested service, UDS responds negatively thus gives a negative
response in return. NRC contains rejection cause. Negative response message mainly
consists of three sections negative response service identifier (size : 1 byte, value :
0x7F), SIDRQ (size : 1 byte) and negative response code (size : 1 byte) as shown in
Figure 5.

7. RESULTS

 Before implementing the UDS protocol, it is necessary to configure the clock modules

as it is basic requirement for motor controller on S32K144 Evaluation Board, that is

executed on S32 design studio software. Therefore, first clock modules outputs are

described then UDS implementation outputs are analysed. SPLL is being initialized

and disabled and waited to be valid. First shall calculate the value of Voltage

Controlled Oscillator (VCO_CLK) to get value of SPLL_CLK as shown in equation 2

and 3. Substituting the value of SPLL_SOURCE is taken as 8MHz and PREDIV lies

between 000 to 111. 000 is considered as 0 and MULTI is taken as 24 which is

Multiplying the system by PLL.

Figure 4: UDS services for Boot

Flashing

Figure 5: UDS Negative Response
example (UDS on CAN)

M. Shridhar Kuntoji et al. / Design of UDS Protocol in an Automotive Electronic Control Unit260

VCO_CLK =[SPLL_SRC / (PREDIV+1)] x (MULTI+16)

 (2)

VCO_CLK=[8 / (0+1)] x (24+16)

VCO_CLK=[8] x 40

VCO_CLK =320MHz (3)

Substituting the value of VCO_CLK from equation 3 into equation 4 to get the value of
SPLL_CLK.

SPLL_CLK= (VCO_CLK / 2) (4)

SPLL_CLK=(320 / 2)

SPLL_CLK=160MHz (5)

From the Equation 4 and 5, it is observed that SPLL_CLK initialization is 160 MHz
hence it is noted and the system clock output are shown in Table 3. Now, UDS
protocol generated outputs are analyzed showing Positive Response and Negative
Response. 18DA58F1 is a client ID (hex) and 18DAF158 is a server ID (hex) shown in
detail in Table 4.

 Table 3: System Clock Output

 Divisions Clock Frequency

DIVCORE=1 div by 2 Core

Clock

80MHz

DIV BUS div by 2 Bus

Clock

40MHz

DIV SLOW div by 2 Flash

Clock

26 2/3 MHz

SPLLDIV 1 div by 1 SPLL

Clock

160 MHz

 Table 4: UDS Generated Output

M. Shridhar Kuntoji et al. / Design of UDS Protocol in an Automotive Electronic Control Unit 261

This Time offset is shown in the left side in m sec and data length is 8 bits. Data bytes
are represented in hex values. From example 1, Client ID 18DA58F1, whose data bytes
is 02 10 01 55 55 55 55 55, server displayed 7F 10 78 00 00 00 00 is received-response
pending. NRC(Negative Response Codes) implies that the request message has been
received accurately and every parameters in request message are valid but the action
performance is not completed and the server is not prepared to receive another. As soon
as requested service completes, the server sends positive response or negative response
message with a response code distinct from this , 40 is added to 10 and displays 50
(0x10 +0x40) i.e 50 02 00 32 01 in 18DA58F1 and confirms the positive response. From
example 2, 18DA58F1 displaying 02 27 01 55 55 55 55 55 and 40 is added to server ID
06 67 01 12 34 56 78 00 i.e 27 becomes 60 since positive response to service 0x27
request consists of response SID 0x67(0x27 + 0x40), hence shows the corresponding
positive response as shown in Table 4.

8. CONCLUSION

This paper discusses & proposes the method of implementation of UDS protocol

according to the standard ISO 14229-1 and describes how it can be developed in

various embedded software applications. This method would improve the development

efficiency of UDS protocol and reduces the workload of developers. The

implementation of embedded electronic circuits, use of communication protocols and

standards which has become important to ensure the proper functioning, monitoring

and also working of automotive systems in daily life.

REFERENCES

[1] S. Dekanic, R. Grbic, T. Maruna and I. Kolak, "Integration of CAN Bus Drivers and UDS on Aurix

Platform," 2018 Zooming Innovation in Consumer Technologies Conference (ZINC), 2018, pp. 39-42.

[2] Panuwat Assawinijaipetch, Michael Heeg, Daniel Gross, “Unified Diagnostic Services Protocol

Implementation in an Engine Control Unit, 2013.

[3] Muneeswaran. A “Automotive Diagnostics Communication Protocols Analysis- KWP2000, CAN and

UDS”, IOSR Journal of Electronics and Communication Engineering (IOSR-JECE), pp 20- 31.

[4] M. Wajape and N. B. Elamana, "Study of ISO 14229-1 and ISO 15765-3 and implementation in EMS

ECU for EEPROM for UDS application," 2014 IEEE International Conference on Vehicular

Electronics and Safety, 2014, pp. 168-173.

[5] Peti, Philipp, et al. “A quantitative study on automatic validation of the diagnostic services of Electronic

Control Units”. Emerging Technologies and Factory Automation, 2008. ETFA 2008. IEEE

International Conference.

[6] M. Matsubayashi et al., "Attacks Against UDS on DoIP by Exploiting Diagnostic Communications and

Their Countermeasures," 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring).

[7] S. Bidkar, S. L. Patil and P. Shinde, "Virtual ECU Development for Vehicle Diagnostics Software

Testing using UDS Protocol," 2021 Asian Conference on Innovation in Technology (ASIANCON),

2021, pp. 1-6.

[8] S. R. Nayak and A. Bagubali, "Study on Diagnosis of Automotive Network," 2019 International

Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN),

2019, pp. 1-6.

[9] F. Luo and Q. Wen, "Implementation of bootloader based on DoIP," 2019 IEEE 2nd International

Conference on Computer and Communication Engineering Technology (CCET), 2019, pp. 239-244.

[10] S. Nautch, "A serial Bootloader with IDE extension tools design and implementation technique based

on rapid embedded firmware development for developers," 2017 12th IEEE Conference on Industrial

Electronics and Applications (ICIEA), 2017, pp. 1865-1869.

M. Shridhar Kuntoji et al. / Design of UDS Protocol in an Automotive Electronic Control Unit262

