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Abstract. In this paper, a time-varying controller is developed for Euler-Lagrange 
systems with bounded disturbances. A mapping strategy is designed to make the 
convergence time of the system achieve at an arbitrarily pre-assigned finite time. 
The selection of the time period is independent of the initial conditions, and the 
performances is free of chattering. To be specific, the proposed controller is 
constructed in two steps: Firstly, a common PD controller is designed to ensure the 
asymptotical stability of the nominal system; Secondly, by employing the mapping 

strategy, then the obtained new controller can make the disturbed system converged 
at a specified time. In the simulations, a two-link manipulator is used to validate that 
both uniformly stability for the undisturbed system and pre-assigned time attraction 
for the disturbed system can be achieved. 
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1. Introduction 

1.1. Research Background and Significance 

With the rapid development of economy and science and technology, a variety of new 

and high technologies are emerging in modern society. A new round of technological 

industrial revolution is booming, which is bound to make the industry more dependent 

on automation and information means to improve their industrial competitiveness and 

economic benefits. 

Therefore, more and more industries choose to introduce manipulator systems to 

help people complete tasks. Especially in the power industry, when carrying the high-

voltage live working, there always exist complexity and diversity of live working objects, 

relatively complex working environment and high potential safety hazards, people must 

constantly develop safer and more efficient live working methods, which brings good 

market prospects for the development of high-voltage live working robots [1]. 

Live working is an important method to test, repair and transform power equipment. 

It has made great contributions to improving power supply reliability, reducing power 

outage losses, and ensuring power grid safety [2]. Traditional manual live working 
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requires workers to use a variety of insulated hot rods or insulated gloves to contact the 

high-voltage line indirectly/directly in an insulated bucket raised to the height. Therefore, 

workers are always in a very dangerous working environment. Manual live line work 

requires very strict safety protection and shielding. If the workers’ pay little attention, 

they will directly face the risk of electric shock. When working on overhead transmission 

lines, the workers are in a high-altitude environment, which increases the risk of falling 

from high altitude. In addition, traditional live line operation often requires the 

cooperation of many skilled workers, and the technical requirements of workers are 

relatively high. 

In order to overcome the difficulties and deficiencies of manual live line operation 

and meet people's demand for continuous power supply. It is very necessary to develop 

a live working robot system with stronger safety and adaptability, overcome the 

difficulties and limitations of manual live working, and replace manual live working, and 

meet the actual time requirements in real applications [3]. 

1.2. Research Status 

In recent years, with the rapid update and development of cooperative manipulator 

products, and with the popularization of applications in various industries, cooperative 

manipulators have gradually received extensive attention. Therefore, more and more 

scientists have invested in the research of cooperative control of manipulators. Up to now, 

fruitful achievements have been obtained. When applying the multi-manipulator 

consensus theory to engineering practice, its application objects are mostly nonlinear 

systems. Among them, Euler-Lagrange system is a classical and universal nonlinear 

system, and the form of Euler-Lagrange equation is often used to describe the 

manipulator model. Specifically, the existing results on cooperative control of 

manipulator are mainly divided into the following aspects. 

Convergence performance: Note from [4] that the convergence of coordinated 

control objectives for multiple Euler-Lagrange systems can be achieved within a fixed 

time, which is independent of initial conditions. Based on the Lyapunov stability and the 

nearest neighbor-interactions rules, the fixed-time bipartite consensus problem for Euler-

Lagrange systems with a directed signed communication network was investigated in [5] 

by using a distributed estimation-based control protocol. In [6], the authors proposed a 

new distributed fast non-singular terminal sliding mode controller to study distributed 

finite-time containment control problem for multi-agent systems with double-integrator 

leaders and Euler-Lagrange followers. 

Model independence: The problem of model-independent distributed containment 

control for multiple Euler-Lagrange systems with external disturbances and uncertainties 

was studied in [7]. In [8], a new model-independent distributed control approach was 

presented for cooperative formation tracking of multiple Euler-Lagrange systems. 

Time delay: In [9], a new event-triggered communication scheme for Euler-

Lagrange systems with communication time delays was presented. 

Collision avoidance/obstacle avoidance: By integrating an improved distributed 

optimization algorithm and an adaptive control law, the authors achieved distributed 

optimal formation for uncertain Euler-Lagrange systems with collision avoidance in [10]. 

In [11], a novel log-type attractive potential field was utilized to achieve the obstacle 

avoiding task and trajectory tracking task of uncertain Euler-Lagrange systems. 
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1.3. Purpose of This Article 

Although there are many new achievements in the research of mechanical arm, it is still 

not enough to replace manual work at heights with mechanical arm. And it can be seen 

from [12] to [15] that in recent years, the research on aerial live working robots mostly 

focuses on the safety and structural design of the robot itself, the positioning of the work 

target and remote-control methods. In general, the live working process can be roughly 

divided into three processes: grabbing the branch line, transporting the branch line near 

the main line, and clamping the main line and the branch line. The completion time for 

each task of the manipulators should be designed at specific finite time, otherwise, the 

operation efficiency will greatly reduce. Therefore, the research on the time optimization 

of high-altitude live working robot has very important practical significance.  

2. Problem Formulation 

2.1. Problem Statement 

An illustration of the high altitude live working robot is given in figure 1, where labels 

① to ⑥ represent insulated bucket arm, live wire, mechanical arm end tool, mobile 

lifting platform, mechanical arm, mobile lifting platform and operating platform, 

respectively. Then the live working process can be roughly divided into three processes 

(shown in figure 2): grabbing the branch line, transporting the branch line near the main 

line, and clamping the main line and the branch line. 

In this paper, we set the whole process time as �, specify the designated location as ��, the process time of grasping the branch line as ��, the process time of transporting 

the branch line to ��as ��, and the process time of clamping the main line and branch 

line as ��. Each time is limited, and the mapping strategy and obstacle avoidance method 

are adopted, so that the operation originally required a long time can be completed within 

a specified time. Thus, the operation time of the whole process can be shortened finally. 

①

⑤

②

⑥

③

④

 

Figure 1. Schematic diagram of live working 
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Figure 2. Flow chart of live working 

Consider the Euler-Lagrange system described as follows: 

       

�(��)��� + �(��� ,��)��� + 	(��) = 
� , � = 1,2                 (1) 

where �� ∈ ��  and 
� ∈ ��  are the system state variable and the control input 

vector, respectively. �(. ):�� → �� represents the inertia matrix, �(. , . ):�� × �� →��  represents the centripetal-Coriolis matrix. The inertia matrix �(��)  is positive-

definite, the centripetal-Coriolis matrix �(��� ,��)  is linear in ��� , and �� (��) −
2�(��� , ��) is skew-symmetric. 

A perturbation signal 
(�): [0, ∞) → �� added to equation (1) can be described as 

follows: 

     

�(��)��� + �(��� , ��)��� + 	(��) = 
(�) + 
� , � = 1,2              (2) 

where the disturbance 
(�) denotes unknown bounded external disturbance and its 

upper bound is unknown. 

Assumption 1: Assume that the disturbance signal 
(�)  is bounded within any 

finite time interval, i.e., for every � > 0, there exists a positive constant 
� > 0 such 

that ||
(�)|| < 
�  for all � ∈ [0, �), where 
�  can be unknown.  

2.2. Mapping Strategy 

This section mainly introduces some content about mapping strategies. 

Definition 1: The following definitions will be used in the follow-up developments. 

1) A continuous function �(. ): [0, �) → [0, ∞) belongs to class �(or � ∈ �(�)) if 

it is strictly increasing subject to ����→�� � (�) = 0 and ����→	� � (�) = ∞. 

2) �(�) ∈ �  belongs to class �� ⊂ �  if there exist ��(0) = 1  and ��(�) ≥ 0  for 

all � ∈ [0, �). 

3) A continuous function �(. ): [0, ∞) → [0, �)  belongs to class � (or � ∈ �(�) ), 

suppose that its inverse function satisfies �
� ∈ �(�) . Then, it yields that �  is a 

continuous increasing function to ����→�� � (�) = 0 and ����→� � (�) = �. 

4) �(�) ∈ �  belongs to class �� ⊂ �  if there exist ��(0) = 1  and ��(�) < 0  for 

all � ∈ [0, ∞). 

According to the above definitions and reference [16], one can obtained the 

following results directly. 

Lemma 1: ��(�): = 
�(�)/
� , ��(�): = 
��(�)/
�� , ��(�(�)): = 
�(�)/
�  and �
(�(�)): = 
��(�)/
�� .Then, the following statements will hold for any functions � ∈ �(�) and � = �
� ∈ �(�). 
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1) ��(�) = 1/��(�(�)) and �
(�(�))���(�) + ��(�(�))��(�) = 0. 

2) ��(. ): [0, �) → [0, ∞) , �
(. ): [0, �) → � , ����→	� �� ��� = ����→� �
 ��� = ∞ . 

3) ��(. ): [0, ∞) → [0, ∞), ��(. ): [0, ∞) → �, ����→� ����� = −����→� ��(�) = 0. 

4) Suppose that �� = �� + �� and ��, �� are class � functions, then it yields that ��  belongs to class �  as well. Similarly, it follows from �� = �� + ��  and �� , �� 

belong to class � that ��/2 also belongs to class �. 

5) If � ≥ 1, ���(�) will be the derivative of a class � function. 

6) For � > 0, function ��
�� can be regarded as the derivative of a class �(�) 

function if and only if there holds � = ��. 

Assumption 2: Let ��  denote the initial time and ��� = �� − �� , � = 1,2,3 . 

Suppose that there exist �� ∈ �(��) and �̃� > �� such that for any �� > 0 the closed-

loop response of system (1) under infinite-time control 
� = �(��� , ��)  satisfies ����(��)� ≤ ���(���) for all � ∈ [�̃� , ∞) and any of the following conditions is met: 

1) ����(��)� ≤ ����(���),∀� ∈ [�̃� , ∞). 

2) ‖�(��� , ��)‖ ≤ ����(���),∀� ∈ [�̃� , ∞). 

With the above preparations, some main results are provided in the following section. 

3. Main Results 

Theorem 1 (Nominal system): Suppose that � ∈ ��(�) and � ∈ ��(�) are symmetric 

about � = !, and ℎ(�� , �, �) is designed as follows: 

ℎ(�� , �, �) = "�� �(��)�(��/��(��), �) + [��(��)/��(��)]�(�)��
+[1 − �� �(��)]	(�), � ∈ [��, �� + �)�(�� , �), � ∈ [�� + �, ∞)

          (3) 

Then, the closed-loop system modeled by the Euler-Lagrange equation (1) and the 

prescribed-time control 
 = ℎ(�� , �, �)  is (globally) uniformly prescribed-time stable 

and converges at � = �� + � , if system (1) under the controller 
 = �(�� , �)   can 

exponentially converge to 0 with any initial state and � satisfies：
 

           

�(��) = �[1 − �!#( − ���/||$||)]                    (4) 

where � ∈ (0,0.5), $ ∈ �� and satisfies the following equation: 

                

$� + ��$ = −%�                           (5)
 

with � ∈ ��and � satisfies: 

       || �!#(��)|| ≤ &2||$
�||||$|| �!#( − �/(2||$||))            (6) 
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Proof: The mapped part of system (1) by replacing with � and �, then one can 

obtains 

�(�)�� + �(�� , �)�� + �� �(��)	(�) −
�� (��)

�� (��)
�(�)�� = �� �(��)�(��/��(��), �)     (7) 

Note that the relationship between equation (7) and system (1) is one-to-one 

mapping of an attractive infinite-time closed loop solution. In the following, we will 

explore a control input 
 = ℎ(�� , �, �) for system (1) such that its closed-loop system 

performs similar behaviors to those of equation (7).  With these discussions, the goal 

can be achieved by using (3) for � ∈ [��, �� + �) with a simple substitution.  

In the following, we will discuss adding perturbed to the system of Theorem 1. 

Theorem 2 (Perturbed system): During the Step 1, Step 2 and Step 3, set �� = 0 

and select the qualified 
(�) . Besides, we construct that � ∈ ��(��)  is the inverse 

function of �� ∈ �(��) and function ℎ�(���,�'� , ��) is shown by this: 

ℎ�(��� ,�'� , ��)(�� �(���)�(���/��(���),�'�) + [��(���)/��(���)]�(��)���
+)1 − �� �*���+,	����, �� ∈ -��, �� + ��, � = 1,2, � = 1,2,3����� , �'��, �� ∈ -�� + �, ∞�, � = 1,2, � = 1,2,3

      (8) 

If system (1) is globally prescribed-time tracking by using 
� = ℎ�(��� ,�� , ��) ,

 then the perturbed system (2) will be globally prescribed-time attractive and co

nverge at � = �� with the prescribed-time control 
� = ℎ�(��� ,�'� , ��). 

In Step 1, map system (2) onto a finite interval, then the closed-loop form of system 

(2) with 
� = �(���,��, ��) can be given as follows: �������� + �����,������ + �� �����	���� −
�� ����

�� ����
��������                

= 
(�) + �� �(��)�(���/��(��),��)                     (9) 

Note that the above equation is acquired by using the mapping strategy similar to 

system (7). With the above developments, one can construct a 
� = ℎ�(���,��, ��) for 

system (2) such that the closed-loop system performs similar behaviors to (9). Then we 

can achieve the goal by a simple substitution and the use of (8) for � ∈ [��, �� + ��). 

In addition, by using the reverse-mapping of (9): 

     

�(�)�� + �(�� , �)�� + 	(�) = �(�� , �) + ���
(�(�))            (10)
 

where ���
(�(�))  tends to 0 when � → ∞  since 
(�)  satisfies Assumption 1. 

Thus, system (2) under the infinite-time control exhibits same behaviors to the closed-

loop of system (1). 

In Step 2 and Step 3, the corresponding detailed analyses are the same as above, 

which are omitted for space limitation. 

Remark 1: For �� , it satisfies �� + �� + �� ≤ � , which �  represents the limited 

time of the whole operation process. It is equivalent to setting the working time periods 

of Step 1, Step 2 and Step 3 within �� �� and  ��, respectively, such that the time of whole 

operation process within �. 
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4. Simulation 

4.1. Mapping Functions 

Three � class functions can be constructed as follows with .� > 0, /� > 0 and 0� >
0: 

�(�) = ∑ .����/(� − �)���
���                       (11)  

�(�) = −∑ .� �2( 1 − �/�)�
���                      (12) 

�(�) = ∑ .� �.2��(3�/2�)�
���                      (13) 

In the following simulations, set .� = 20 , /� = 1 , 0� = 1 , � = 20 and 30  for 

comparisons. 

4.2. Two-link Manipulators 

Consider a two-link robotic manipulator with the following dynamics: 

4��� ������ ���
5 4������5 + 4��� ������ ���5 4������5 + 6(�) = 
             (14) 

where the dynamics parameters for each manipulator are as follow: 

���(�) = 8078( ��) + 13                          (15) 

���(�) = ���(�) = 4 8�2( �� + ��) 8�2( ��) 

+2 8�2�( �� + ��) + 0.5             (16) 

���(�) = 2 8�2�( �� + ��) + 0.5                       (17) 

��� = − 8078( �� + ��)���                             (18) 

��� = − 8078( �� + ��)(��� + ���)                       (19) 

��� = 8078( �� + ��)���                         (20) 

��� = 0                                  (21) 

6(�) = 4	(6 078( ��) + 2 078( �� + ��))	(2 078(�� + ��))
5                 (22) 

 where the parameters of the 2-DOF manipulator are shown in table 1: 
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Table 1. The parameters of the 2-DOF manipulator 

 the length of 
links 

the center of mass 
positions 

the mass of the 
links 

the moments of 
inertia 

Arm 2 �� = 2� ��� = 1� �� = 2�� �� = 0.5�� ⋅�� 

Arm 1 �� = 2� ��� = 1� �� = 2�� �� = 0.5�� ⋅�� 

Set the initial state variables � = �� = 0, �� = 0 and the gravitational acceleration 	 = 9.81�/8�. In addition, the desired position to be reached is �� = -90� 09�. 

 

Figure 3. The state trajectories under PD controller with �� = 20, �� = 1, 	� = 1, 
 = 20. 

 

Figure 4. The state trajectories under PD controller with �� = 20, �� = 1, 	� = 1, 
 = 30. 

It can be seen from figure 3 and figure 4 that the manipulator can achieve the goals 

in both cases, where the convergence time in figure 3 is before 20s, while 30s in figure 

4. This indicates that the proposed preassigned-time control law performs well. In 
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addition, it can be found that the fluctuation and the peak value of ��  and 
�  in figure 4 

are obviously smaller than those in figure 3 when the evolution of time approaches to the 

specific time instant 20s and 30s, respectively. Hence, there always exist tradeoffs 

between the performance and the convergence time. 

5. Conclusions 

This paper mainly introduced a prescribed-time controller. On the basis of infinite-time 

controller, a novel preassigned-time controller was developed by using a mapping 

strategy. It is found that the smaller the specified convergence time, the greater the 

fluctuation of its acceleration and control torque when it is close to convergence time 

instant.  
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