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Abstract. Due to the weak rigidity of an industrial robot, its end effector usually has 
poor absolute positioning accuracy, especially under varying payloads. Such 
situation is common in scenarios of handling, machining and tool changing. 
Conventional off-line calibration or compensation methods can only eliminate 
systematic errors, while such methods are invalid to the dynamic errors brought by 
varying payloads. This paper proposes a deep reinforcement learning(DRL) 
approach to solve the problem of dynamic errors, in consideration of external 
payloads changed manually. An online full closed loop system is established to 
verify the proposed method, which consists of a KUKA robot KR6, a Leica laser 
tracker, and a BECKHOFF PLC controller. The robot and the laser tracker work as 
the slavers of the master PLC controller, in between the communication is 
accomplished using EtherCAT. Logically, the robot is controlled by mxAutomation 
and the laser tracker is connected to an embedded EtherCAT slave card. 
Experiments on the robot demonstrate the effectiveness of the proposed DRL 
methods. The changed payloads range from 1.177Kg to 4.179 Kg, while the position 
accuracy of the robot can be maintained no more than 0.4mm by the DRL algorithm. 

Keywords. Industrial robotics, varying payload, deep reinforcement learning, error 
compensation 

1. Introduction 

In recent years, compared with traditional application scenarios, robotics need to 

undertake more complex tasks, such as precision assembly and high-precision machining. 

But existing off-line calibration and compensation methods are not able to adapt to 

changing factors. Robotics can not achieve high absolute positioning accuracy.  

In high-end application scenarios, it is hard to determine the movement of robotics 

by artificial teaching method. On the one hand, robotics need to reach thousands of point 

in a wide range of space, on the other hand these scenarios involve complicated curves 

and surfaces, so CAD software combined with robot off-line programming has become 

the mainstream method. Danevit and Hartenberg[1] proposed the best-known DH 

parameter method, which used differential kinematics to establish the identification 

Jacobian matrix and mapped the end error to various geometric parameters[2]. Due to 
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the weak rigidity of motor gears and reducer at robot joints, the position accuracy 

decreases obviously under the heavy payloads or high speed motion, so the modeling of 

robot stiffness is also one of the focuses of research. At present, mainstream methods 

mainly include finite element method, virtual joint method and so on. The finite element 

method, not only can be utilized to analyze the robot's stiffness error can also be used to 

analyze the temperature of the thermal expansion of error[3]. The principle of the virtual 

joint method[4] is to simplify the reducer gear and other parts at the joints into springs. 

Salisbury[5] first used this method to establish a stiffness model of the robot joint. Wang 

Yi[6] established a flexible model of the robot, decomposed the flexibility error into two 

cases of dead weight and the external load and compensated them respectively. 

The modeling of complex non-geometric errors is not only complex but also has 

limited practical effects. In the actual work scene, loads and other factors will often 

change, however these off-line methods are not in a position to adapt to the changing 

factors. Nevertheless, online compensation can respond timely to complex time-varying 

factors. The main idea of robot online compensation is to integrate external measurement 

equipment into the robot control process and act as a sensor. In [7], c-track, a high-

precision binocular camera, was used to measure the position and pose data of multiple 

targets in space in real time, and obtained the real-time spatial relative error of FANUC 

robot. However the use of camera compensation needs to paste a large number of feature 

points, also it is easy to be affected by lighting. So there are a large number of studies 

using laser tracker to compensate the errors, such as Shi[8], Qu[9] et al. has realized to 

the accurate compensation with laser tracker and the position of the open KUKA robot 

control interface RSI. Meanwhile, compensation has a large lag because of the delay of 

the control system. In order to achieve better real-time compensation, the robot and 

sensor are connected into the real-time control system. 

After entering the Internet era, the application of artificial intelligence technology in 

the industrial field is gradually put on the agenda[10-13]. The core of reinforcement 

learning is to make a large amount of data getting in the process of interaction with the 

environment as a feedback, to guide the agent to make decisions. As outlined in [13] and 

[14], these characteristics are ideal for the development of intelligent manufacturing 

systems. Mahmood et al.[10] used UR5 to imitate the environment of OpenAI Gym and 

compared the effects of four algorithms TRPO, PPO, soft-Q and DDPG in the path 

planning task of manipulator. They found that the fewer the nodes of the manipulator, 

the better the control effect. In the industrial problems solved by the RL method, from 

[11], DDPG algorithm is combined with the trajectory planner using force feedback to 

solve the force control problem in the precision nail hole task. In [12], DRL methods are 

used to improve trajectory smoothing in CNC applications.  

In this paper, an online full closed loop system is built for online compensation 

research, and an error compensation learning method based on DRL algorithm is 

proposed. The main contributions of paper are as following: 

 A complete set of automatic calibration equipment and an online full closed 

loop compensation system are established. By comprehensively considering 

various technical routes, a BECKHOFF PLC controller and its supporting 

various special hardware modules are determined to utilize. 

 A robot error compensation method based on DRL is developed, and that is 

evaluated experimentally on a 6-DOF industrial robot KUKA-KR6. The control 

goal is to follow different types of reference paths accurately, such as square or 

circular paths. 
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This paper is structured as following. Section 2 presents the proposed DRL methods. 

Section 3 presents the online full loop compensation system. Following that, in Section 

4, the implementation of methods to control a 6-DOF robot is recommended. Finally, the 

paper ends in Section 5 with conclusions. 

2. Reinforcement Learning Based Compensation Methods for Robotics 

Industrial robotics’ own dynamic calculation is complicated, meanwhile the influence 

of external payloads is superimposed, so the error model is inevitably large and complex. 

For this problem, let industrial robotics rely on large-scale data for self-learning to build 

a error compensation model[15-17]. Currently, the mainstream deep reinforcement 

learning network can be roughly divided into DQN network family based on Q-learning 

and Policy Gradient based on strategy gradient[18]. In order to avoid the loss of robots 

due to massive sampling in the stage of reinforcement learning exploration, DDPG 

algorithm was selected due to its high sample efficiency but relatively difficult parameter 

tuning. 

2.1.  DDPG Algorithm 

DDPG is a deep deterministic strategy Gradient algorithm, which is proposed to solve 

the continuous action control problem. DDPG algorithm is essentially a reinforcement 

learning algorithm of AC framework[19]. It can predict the deterministic strategy and 

maximize the total reward by single-step updating policy.  

The sample efficiency of policy-based methods is low because they only use the 

latest samples collected from the policy. In the DQN network, an important idea of 

experience replay is put forward. DDPG algorithm uses this idea to solve the problems 

of correlation and low sample efficiency by constructing an experience pool. Training 

labels are constructed through system information, and the commonly used format of 

construction data labels is (S, A, R, S�), where S is the current state of the system, A is the 

action finally selected by the network, R is the reward value given by the interactive 

environment, and S� is the system state after action A is performed. Some items are 

randomly extracted from the experience pool to calculate the loss function and update 

the network parameters in each episode. 

DDPG algorithm adopts actor-critic network framework, which using two networks 

with different functions to realize interactive learning with the current environment. The 

working principle is as following:  

Critic neural network is used to approximate the optimal action value function , 

denoted as, where ω is the parameter of the neural network. The ultimate goal of deep 

reinforcement learning is to maximize the cumulative reward, and the action value 

function Q is the conditional expectation of U�, where γ is the discount factor. 

U� =  r� + γr��� + γ�r��� + γ�r��� + ⋯                                 (1) 

Q�s�, a�� = E�U�|S� = s�, A� = a��                                     (2) 

Q∗�s�, a�� = max
�

Q�s�, a��                                          (3) 

 In addition, actor neural network is used to approximate the policy function, 

denoted as μ�s|θ�, where θ is the parameter of network. It’s input is the current state 

value s�. The network outputs a deterministic action a� to obtain the maximum Q value. 

a� = μ�s�|θ�                                                               (4) 
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The critic network is updated by the gradient descent method. As mentioned above, 

target network is used to ensure the convergence of parameters, and it’s corresponding 

target network is Q’�s, a|ω��. The calculation formula is as follows: 

target� = R��� + γQ’�S���, μ�s|μ� | ω�� 
                    (5) 

Loss =
1

N
��target� − Q�S�, a�|ω�	�
	

�
�

 

                    (6) 
The actor network updates θ through the strategy gradient algorithm to maximize 

the objective function J(θ). Based on the deterministic strategy gradient theorem: 


���μ�θ�	 ≈
�

�
∑ 
��,�|��� |

�
��，
�(��)

����|��|�                (7) 

Actor neural network generates strategy according to the current environment state 

s� and outputs specific action a� to interact with the environment. Critic neural network 

is used to evaluate the strategic action a�, and determine whether the situation is good or 

bad at this time. It is measured by a value, and the value r is returned to actor neural 

network for learning. Then the neural network carries out parameter optimization, so that 

the cost function converges to the global optimal.  

2.2. DRL Compensation Method 

In this section, we present a framework that uses the DPGG algorithm to compensate 

errors of the robot end effector under varying payload. We designed the robot to complete 

the target task in one round, that is, to accurately complete a whole track under the 

condition of varying payload. A round has n steps in total, and the number of steps is the 

number of the robot motion instructions. The deep reinforcement learning network takes 

the position and load of the robot end effector as state S, consisting of the three-

dimensional coordinate position (X,Y,Z) and load η. However, since the motion 

deviation of the robot is generally very small, if the position of the robot motion 

instruction corresponding to the theoretical position is taken as the output layer, the 

output of the network will be extremely similar to the input, resulting in learning 

difficulty and failure to obtain the correct learning result. 

Therefore, in order to make the input and output of the network as far away as 

possible, we design the robot position compensation E�∆X, ∆Y, ∆Z� as the action A, then 

the robot motion instructions are calculated by the initial instructions and action A, and 

the reward R of the reinforcement learning network is calculated by the theoretical 

position P�  and actual position P�  of the robot, using the calculation method of the 

negative Mahalanobis distance. 

D��P�, P�� = �(P� − P�)�∑ (P� − P�)��
                               (8) 

R = σ × D��P�, P��                                              (9) 

Where ∑ is Covariance matrix of P� and P�, σ < 0. 

W. Xiao et al. / Compensation Methods for Industrial Robotics Under Varying Payloads448



3. An Online Full Closed Loop Compensation System 

This section describes the establishment of the system in detail. In order to achieve real-

time compensation, we designed and established an online full closed loop compensation 

system[20-21], which connected the robot and the laser tracker to the real-time control 

system to obtain the position of robot in real time, as shown in figure 1. 

The system is mainly composed of three parts: the laser tracker, the robot and the 

BECKHOFF PLC controller. The used laser tracker is a Leica AT901-B laser tracker 

with TCP/IP communication port. That has high closure and low flexibility and cannot 

be linked with other software. In order to realize the cooperative control and systematic 

communication between robot and laser tracker, we designed an online measurement 

module of laser tracker based on STM32 chip. The used robot is KUKA-KR6 robot, and 

its repeated positioning accuracy is 0.05mm, absolute positioning accuracy is 2mm. The 

robot work as the slavers of the master PLC controller through mxAutomation (a KUKA 

function block), so as to control the robot movement in real time. The master PLC 

controller as an external controller, connects the robot system and the laser tracker 

system, which process all kinds of data.  

 

Figure 1. Schematic diagram of the online whole-close-loop compensation system. 

 

3.1. Online Measuring Module of  the Laser Tracker 

In most cases, the laser tracker is connected with SA software, and data analysis is carried 

out in this software, but in order to improve its flexibility, it needs to be developed by 

secondary development API EMSCoN. We designed an embedded module based on 

STM32 chip which forms EtherCAT measurement slave together with module EL6021. 

The module is a slave terminal module from BECKHOFF, used for converting serial port 

into EtherCAT protocol. 

Serial communication may cause some delay and instability in the system 

communication. So module integration processing is carried out, by using ET1100 chip 

to skip conversion of the external module. TCP/IP protocol data parsing and conversion 

of EtherCAT protocol on the embedded module are achieved, which reduces the impact 
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of serial communication on the module. In order to enhance the working frequency 

performance of the module, STM32F4 chip with a higher dominant frequency is used. 

That also strengthens the electrical isolation characteristics of the module, effectively 

isolated the electromagnetic interference that may be generated in the laser tracker 

controller and the robot controller, then the module works more stably. 

3.2. External Control System of Robot 

In the above work, the secondary development module of the laser tracker has been 

integrated into the PLC controller to realize online control and measurement of spatial 

points. In order to form an full closed loop system, the robot also needs to work as the 

slavers of the master PLC controller. MxAutomation is an interface for KUKA robotics 

to achieve external PLC control which supports external PLC programming to control 

robot movement in real time. The terminal module EL6695-1001 is specially developed 

by BECKHOFF for communication with the KUKA robot, which can establish secure 

communication between the external controller (TwinCAT in this paper) and KUKA 

KRC4 controller. The EtherCAT bridge can also be used to exchange insecure I/O data 

between the external controller and the KUKA-KRC4 controller if both controllers are 

configured as primary stations in their respective bus lines. To do that, the EtherCAT 

bridge must be configured as two slave stations. The EtherCAT bridge forwards the 

received data from one circuit to another, which allows for the exchange of large amounts 

of data at the bus clock rate.  

The system workflow is as follows: First, the initial robot motion commands are 

generated by the laser tracker and off-line planning method. Then, the initial motion 

command is sent from PLC to the robot controller, and the laser tracker is ordered to 

collect position information. When the robot moves, the joint angle and confirmation 

signals are sent back to the PLC via the robot controller and EtherCAT, while the 

measured position data is sent to the PLC via the real-time measurement module, the 

laser tracker controller and EtherCAT in turn. In this way, the measurement data and 

corresponding control data can be obtained in real time, so that the error of the robot end 

effector can be obtained in real time, and the online error compensation can be carried 

out. 

4. Case Studies 

In order to verify the advantages of the DRL compensation method proposed in Section 

2, an error compensation experimental system for industrial robot was set up, then the 

algorithm and system are experimentally verified and analyzed under two environments: 

constant payloads and varying payloads. The experimental scene is shown in figure 2, I 

is the KUKA-KR6 robot, and Ⅱ is the robot end flange tool which is composed of three 

parts: target ball socket tool, adapting piece of loads and different loads. Its main function 

is making the target ball of laser tracker and different load installed conveniently at the 

end flange.  

Due to the laser tracker can not measure pose of robot, so target ball socket tool is 

designed for that. Multi-point measurement method is used to get the pose of the 

measurement point. First, the target ball is placed at two points of A and B respectively, 

and the vector represents the X direction. Then the target ball is placed at two points of 
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C and D respectively, representing the Y direction. Z direction can be obtained from the 

cross-product of two vectors, and the origin is the position of the target ball.  

One end of the adapting piece of loads is fixed on the robot flange, and the other end 

can be installed with different loads. Loads can be fixed and changed quickly through 

screws, so as to change the payloads of the robot end effector.  

 

Figure 2. KUKA-KR6 robot with flange tool. 

4.1. Error Compensation Analysis Under Constant Payloads  

Error compensation experiments under constant payloads are carried out in the above 

system scenario. Robot tracks a circular trajectory in the robot workspace and the goal is 

to minimize the position error. First, the ideal trajectory and initial motion instructions 

need to be generated in Cartesian space. Circumscribed polygon is made outside the ideal 

circle, and the distance between the vertex of the polygon and the ideal circle is 0.1mm. 

The vertexes of the polygon are the initial instruction positions. 

The first task is to compensate errors under constant payloads. The errors and 

rewards changing in the training process of the deep reinforcement learning model were 

recorded, as shown in figure 3. It can be observed that DDPG algorithm has achieved 

good results in the performance of position accuracy. And the more episodes, the greater 

the total reward, and the smaller the error convergence, gradually approaching 0. After 

40 rounds of training, the error of the robot end effector can converge from 3mm to 

0.1mm under constant payloads. 
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Figure 3. Training process under constant payloads. 

4.2. Error Compensation Analysis under Varying Payloads 

Due to the weak rigidity of robot, its accuracy will deteriorate under varying payloads, 

and the learning model under constant payloads cannot compensate the error, so it is 

necessary to carry out experiments under varying payloads of error compensation 

analysis of industrial robot. The maximum load-bearing capacity of the robot end flange 

is 6Kg, and three weights of 1Kg, 2Kg and 3Kg are used in the experiment, making the 

robot end load-bearing in four states: 1.177kg (no load), 2.197kg (1Kg weight), 3.201Kg 

(2Kg weight) and 4.197Kg (3Kg weight). First of all, as shown in figure 4, it can be seen 

that the influence of different payloads on error. The heavier the payloads, the greater 

the error of the robot. When the payload’s difference is the largest, the error of 0.2mm is 

caused by the payload. 

 

Figure 4. Errors of the robot end effector under different payloads. 

DDPG algorithm is used to compensate for errors, and different payloads were 

changed after 5/10 rounds during network training. The algorithm training process is 

shown in figure 5. It can be observed that DDPG algorithm also achieves good result in 

the performance of position accuracy indexes under varying payloads. Moreover, it can 

be found that the error of the robot increases significantly after changing the payload in 
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the early stage of network training. At this time, the network has not learned to 

compensate the error caused by the load. As the number of rounds increases, the total 

reward of rounds generally shows an upward trend. After 45 rounds, the errors of the 

robot end effector under different payloads can converge from 3mm to about 0.1mm in 

each round. It can be verified that the algorithm has basically learned the error of the 

circular trajectory under different payloads. 

 

Figure 5. Training process under varying payloads. Left: Different payloads changed after 5/10 episodes. Right: 

Errors of the robot end effector under different payloads after training . 

Next, an experiment of changing payloads within one round is carried out, and the 

payloads is changed every 8 steps to verify the error compensation under the condition 

of changing payload. The result of the experiment is shown in figure 6. It can be seen 

that the error of a single track under varying payloads was reduced to about 0.3mm. 

Although the effect was not as good as that of constant payloads. And the result of error 

compensation is best when the load is 1kg, which may be caused by the lack of bad data 

in network training. In general, this experiment verifies that reinforcement learning 

algorithm can compensate availably the errors of the robot end effector under varying 

payloads. 

 

Figure 6. During one episode the errors of the robot end effector under varying payloads. 

5. Conclusions 

This paper introduces the online full closed loop system and error compensation method 

based on DRL to improve the position accuracy of the robot under varying payloads. 

Robot error compensation uses DDPG algorithm to realize the correction of robot motion 

instructions. Finally, two experiments are carried out to evaluate the developed system 
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and method. Results of experiments show that the proposed method can significantly 

reduce the position error from 3mm to 0.4mm. High accuracy can be obtained by using 

the online compensation strategy, and there is no need to build a complex model and 

collect massive data, and the adaptability to the environment is also relatively strong. 

In the future, the 6-DOF laser tracker will be used to carry out more in-depth 

research on pose accuracy, and a variety of applications such as milling and progressive 

forming will be carried out on more types of robots to improve pose accuracy in different 

scenarios. 
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