
Study on Dynamic Resource Scheduling

Method for Domestic Operating System

Virtualization Based on Computing

Domain

ChaoYANG1, Pengyu LIU, Wangxin LIU, Junwei SUN and Dongyang LI

State Grid LiaoNing Information & Telecommunication (I&T) Co, Ltd, Shen Yang,

China

Abstract. Virtualization of computing resources has become a mainstream
technology in the computer world. This paper takes the performance optimization
of resource virtualization platform on domestic operating system as the research
object, deeply analyses the hardware support technology of virtualization, and the
corresponding software principle and mechanism. From the point of performance
research and improvement of resource virtualization, the Computer Domain (CD)
based on virtualization technology is proposed. Based on the software driving
principle and operating mechanism of the Virtual Manage Platform (VMP) kernel
module for computational area analysis, three optimization directions are
proposed: resource virtualization scheduling, I/O optimization and VM immersion
optimization. The computing domain based on resource virtualization unifies the
consistency of resource scheduling and improves the efficiency of resource
scheduling. The experimental results show that the dynamic resource scheduling
method based on computing domain can achieve significant performance
improvement.

Keywords. Operating System, resource virtualization, performance optimization,
computer domain.

1. Introduction

With the rapid development of large-scale integrated circuit technology, computing

power will no longer become the bottleneck of business applications, business exclusive

physical resources become a waste. How to utilize the excess computing resources while

providing secure, stable, fast deployment and on-demand computing resource services is

the mainstream topic in the current computer technology field. Virtualization technology

makes these characteristics come true, and resource virtualization performance is the key

indicator for users to select services [1].

Resource virtualization systems running on domestic operating systems usually

include user-level tools, core virtualization, generally including the following functions:

(1) memory management: including process creation and exit, pause, termination and

1 Corresponding Author, ChaoYANG, State Grid LiaoNing Information & Telecommunication (I&T)

Co, Ltd, Shen Yang, China; E-mail: yangchaoneu@sina.com

Mechatronics and Automation Technology
J. Xu (Ed.)

© 2022 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/ATDE221173

246

other operations; (2) System clock management: setting and acquiring time, etc. (3)

Memory management: allocation and release of large pages; (4) Synchronization is

mutually exclusive: providing mutually exclusive operations on shared data; (5)

Interrupt and exception handling. (6) I/O operation.

Based on the above resource virtualization, this paper presents a Computing

Domain (CD) technology based on resource virtualization. Computing domain refers to

the abstraction of virtualized resources into an independent and complete computing

domain structure [2, 3]. Each computing domain is composed of computing resources,

storage resources and network resources. Based on the computing domain, resources can

be easily dispatched arbitrarily throughout the computer system.

2. Computing DOMAIN Based on Domestic OS Resource Virtualization

The entire computing domain is composed of several virtual resource platforms, which

are usually composed of a single computer. The computing domain can usually be made

up of several virtual resource platforms (VMP). The VMP includes the following

functions: (1) User-tier tools: Users can use the user-tier tools to set parameters to select

different modes of resource virtualization to meet their needs. (2) Core virtualization

layer: The virtualization layer is responsible for the actual creation of each virtual

domain, and different modes of resource virtualization require different virtualization

schemes. (3) CPU virtualization: For resource virtualization in time-sharing

multiplexing mode, use processes or threads to virtualize the CPU to form a VCPU. VM

Entry and VM Exit may occur within a VCPU thread. These two operations require

saving and restoring resource virtualization and the critical state of the host. (4) Memory

virtualization: Memory allocation is mapped linearly: Machine Address (MA) =

Resource Virtualization Physical Address (PA) + Base Address Offset for each resource

virtualization. (5) I/O virtualization: I/O virtualization can be driven by semi-

virtualization. (6) Interrupt and exception handling: within resource virtualization, an

interrupt is generated, and VM Exit is performed first. After the interrupt signal is

preprocessed by the host, it is determined whether the interrupt should be handed over to

resource virtualization. If resource virtualization needs to be handed over, VMP injects a

virtual interrupt into resource virtualization. After VM entry, if resource virtualization

finds that VMP injects a virtual interrupt, jump directly to the interrupt processing entry

within resource virtualization, and wait until the interrupt is processed before doing

other work.

3. Performance Optimization Technology for Virtual Resource Platforms

The nature of virtualization determines that processors must switch contexts more often

than physical machines when running resource virtualization, so the performance of

resource virtualization will theoretically not reach the level of physical machines.

However, when processors run fast enough, users will be unaware of these performance

overhead, and multiple resource virtualization increases the density of business

processing [4]. It can significantly improve the overall usage of the processor. Intel VT

technology improves the execution of instructions in virtualization, from software

translation simulation to direct execution on the CPU, that is, the switch from VMP

C. Yang et al. / Study on Dynamic Resource Scheduling Method 247

module running VCPU to resource virtualization is completed by hardware, which

greatly improves the performance of resource virtualization.

From the above analysis of the running mode of resource virtualization, can be see

that the core of virtualization is "trapped in re-simulation" of the processor. If this mode

changed, it will not be able to virtualize. Therefore, the processor must switch between

environments. There are three main mode switching, including resource virtualization

from non-root mode to root mode switching of VMP kernel module, switching of VMP

module to user space program, and switching of user empty agency to simulate device

I/O processing execution system call to kernel space. Each switch involves context

preservation and recovery, which incurs an overhead on execution performance. The

first is a switch between kernel and resource virtualization, which is accomplished with

hardware assistance and is less expensive and has little impact on performance. The

other two are handled by the program, which incurs more overhead when the number of

handoffs is too frequent. Therefore, in addition to environment optimization, VMP

resource virtualization performance optimization should also propose optimization

methods and ideas from the context switching of VCPU. Combining the previous

research and analysis, this paper puts forward the following performance optimization

ideas.

3.1. VMP Processing Optimization

Among the three switching modes of CPU, the switching between resource

virtualization and VMP kernel module is supported by hardware. The switching between

resource virtualization and VMP kernel module is implemented by hardware, which is

fast and has little impact on resource virtualization performance. The switch from VMP

module to user space is done by software program, which has a high system overhead.

Therefore, based on analyzing the types of resource virtualization exceptions trapped,

modify the handling of VM-Exit exceptions to optimize resource virtualization

performance by controlling the frequency of switching between the two modes. On the

one hand, dropping resource virtualization into exceptions is handled directly in the

VMP kernel module to avoid the overhead of user-space program processing switching

to user space. On the other hand, exceptions that do not occur frequently can be handled

by user-space programs to reduce the processing tasks of the VMP kernel module and

the system overhead of VMP resource virtualization.

3.2. Virtualization Process Scheduling Optimization

After resource virtualization, multiple virtual machines can run concurrently on a single

physical machine. According to the rule of software operation in virtual machine, the

software abnormal events are counted, the switching information of virtualization of

each resource is recorded and passed to the user space monitor. The switching data is

analyzed by the program or platform administrator, and the resource virtualization is

compute-intensive, input/output-intensive or mixed. Then the corresponding

performance optimization is implemented according to the specific resource

virtualization. The job information of the resource virtualization process can be obtained

when VMP starts. Based on the job information, the corresponding CPU dispatch policy

can be obtained. By optimizing the dispatch policy, the resource virtualization program

of VMP has higher priority than the general process in competing for CPU resources,

thus improving the performance of resource virtualization. Avoid combining SI and

C. Yang et al. / Study on Dynamic Resource Scheduling Method248

CGS units, such as current in amperes and magnetic field in oersteds. This often leads to

confusion because equations do not balance dimensionally. If you must use mixed units,

clearly state the units for each quantity that you use in an equation.

3.3. I/O Optimization

For the third switch mode of CPU, mainly resource virtualization exits to the VMP

kernel module because of I/O operation requirements. Because the kernel VMP module

does not handle the exceptions caused by I/O access requests substantially, it exits to the

user space process processing, that is, user space performs the switch from system call to

kernel space during I/O processing. If the I/O data exchange between user space and

kernel does not use single processing mode, but uses I/O buffer queue to complete

multiple I/O processes in one switch, the I/O processing efficiency can be significantly

improved. Based on this idea, semi-virtualization drivers can be used in VMP resource

virtualization to achieve the performance optimization goals of resource virtualization.

Semi-virtualized drivers are implemented in primary I/O device disks and network card

access drivers, thus effectively reducing I/O data replication. Resource virtualization

runs in shared host memory or shares the same block of memory. Simple address

remapping can avoid I/O data replication. In addition, frequent switching between root

and non-root modes can be avoided. Root and non-root mode switching saves the

complete data of virtual resources, reduces the switching between root and non-root

modes, and effectively improves the efficiency of resource virtualization.

4. Dynamic Resource Scheduling Method For Virtualization Based On

Computing Domain

Based on the virtualization of the computing domain, this paper uses the Weighted

Least-Load scheduling method with weights [5, 6]. Each VPM has a specified weight in

the weighted least-load scheduling method. VPMs with higher weights account for a

higher percentage of active loads at any time [7, 8], and computing domain requests are

allocated through the percentage of active loads on the VPM and setting weights. The

workflow of the least-load scheduling method with weights is described below:

Suppose there are N VPMs, each of which has a set weight:),,1(niW
i

� , and

the value of active loads on it is),,1(niA
i

� .

If all sums in the system),,1(niA
i

� are C, then C is:






n

i

i
AC

1

 (1)

The next new load in the system is assigned to server j, which j satisfies:

 ni
C

WA

C

WA
iijj

...1,
/

min
/










 (2)

C. Yang et al. / Study on Dynamic Resource Scheduling Method 249

C is a constant every time a load is balanced, so the formula (2) can be simplified

to:

 ni
W

A

W

A

i

i

j

j
...1,min 









 (3)

The least number of loads scheduling method with weights performs more division

operations in the calculation than the least number of loads scheduling method, thus

incurring some additional overhead. However, its load balancing effect is the best

because it reflects the performance differences among VPMs by setting different

weights for different VPMs.

In computing domain, VPM requests that require operating system to transmit large

amounts of data are mainly read and write [9, 10]. Therefore, in order to determine the

VPM's load, computing domain will record the time t and the amount D of data each

VPM completes its request. Set up in time T, VPMs numbered I perform m services in

total, service time is)1(, mit
i

� , the amount of data transferred is

)1(, mid
i

� in turn, then VPM numbered I load in T is:






m

i

i

m

i

iI
tdL

11

 (4)

If there are a total of N VPM, when computing domain chooses VPM, it can choose

VPM numbered J to satisfy the J:

  NILL
IJ

...1,min 

 (5)

The Minimum Load Method can more accurately distribute the newly generated

files to the VPMs with the lowest load to achieve better load balancing. However, the

minimum load method must calculate the connection time and data transmission amount

of each VPM, which will impose a large additional burden on the system.

5. Conclusion

Based on the virtualization of domestic operating system resources, this paper presents a

computing domain technology based on virtualized resources. Based on the computing

domain technology, it can significantly provide the normalization problem of dynamic

scheduling of virtual resources in domestic operating systems, and reduce the

granularity of resource scheduling. This makes the Weighted Least-Load scheduling

method used in this paper more accurate and efficient.

Based on the computing domain technology in this paper, VMP processing

optimization, virtualization process scheduling optimization and I/O optimization are

used to optimize the VMP of the domestic operating system, and their performance is

compared with that of the unoptimized case as shown in table 1:

C. Yang et al. / Study on Dynamic Resource Scheduling Method250

Table 1. Comparing optimization results based on computing domain optimization method.

Optimization Method
Opt-

VMP
VMP Result

VM exception
handling optimization

95% 60%
With VCPU processing optimization of virtualization process, the

CPU switching frequency is reduced and the system performance is
improved.

I/O
optimization

48.1M/s 28.3M/s
 I/O efficiency has been significantly improved with semi-

virtualization drivers

Scheduling
optimization

9.1s 10.2s
Performance improvements after optimizing the scheduling of

virtualized user processes

According to the three main ways of VMP resource virtualization performance

optimization, this paper compares the performance improvement of resource

virtualization in three aspects: CPU process scheduling, memory usage and I/O

processing by test data before and after optimization, and verifies the feasibility of each

optimization design under three performance optimization ideas. On the basis of

scheduling optimization, there is still much room for improvement in the optimization

results. Especially in the case of multi-resource virtualization.

Acknowledgment

This paper is supported by the scientific and technological project of the State Grid

Company: Research on the Adapting Technology of the Special Operating System for

Power Network based on Domestic Server Hardware(Project Number:2021YF-75).

References

[1] Anderson T, Peterson L, Shenker S, et al. Overcoming the Internet impasse through virtualization [J].
Computer, 2005, 3 (4): 34-41.

[2] Guo B J, Wang Y, Wen L Y, Lu J. Intelligent learning model based on computational area network [J].
Journal of Sichuan University: Natural Science Edition, 2013, (4): 765-769.

[3] Guo B J, Huang J, Lu J, Tang Y. Universal Computing Framework Model for Internet of Things Based
on Computing Area Network [J]. Journal of Sichuan University (Natural Science Edition), 2012, 49
(01): 80-84.

[4] Tari Z, Broberg J, Zomaya A Y, et al. A least flow-time first load sharing approach for distributed
server farm [J]. Journal of Parallel and Distributed Computing, 2005, 65 (7): 832-842.

[5] Elzoghdy Said S F. An Intelligent AntNet-Based Algorithm for Load Balancing in Grid Computing [J].
IJCT, 2013, (11): 2975-2986.

[6] Ruhana K. An Improved Min-min Algorithm for Job Scheduling using Ant Colony Optimization [J].
IJCSMC, 2014, 3 (5): 552-556.

[7] Bernstein P A. Middleware: A Model for Distributed System Services [J]. Communications of the
ACM, 1996, 39 (2), February.

[8] Baker M A, Fox G C, Yau H W. Cluster Computing Review, Northeast Parallel Architectures Center,
Syracuse University, 1995, 16 November.

[9] Cheung A L, Reeves A P. High performance computing on a cluster of workstations [C]. Proc. of the
1st Int. Symposium on High Performance Distributed Computing, 1992:152-160, September.

[10] Fox A, Gribble S D, Chawathe Y, Brewer E A, Gauthier P. Cluster-based scalable network services
[C]. In Proceedings of the Sixteenth ACM Symposium on Operating System Principles, San Malo,
France, 1997, Oct.

C. Yang et al. / Study on Dynamic Resource Scheduling Method 251

