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Abstract. As the expansion of edge devices, such as local edge servers or even IoT 
(Internet of Things) devices, edge computing reforms data processing flow, 
engendering improvement in faster insights, improved response times and better 
bandwidth availability. However, industry encounters computational resource 
constraints of machine learning on edge devices, e.g., limitation of memory and 
processing power. To tackle this situation, we attempt to enhance flexibility of 
neural network models for variable hardware constraints. In this paper, we propose 
a paradigm of neural network combination implementation as a primitive solution; 
further more, we manage to build up a general neural network deployment 
framework for edge devices. 
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1. Introduction 

As the expansion of distributed devices, the information expressway towards central data 

centers becomes sluggish stream because of the data explosion from the edge of the 

network. Edge computing, as a distributed computing framework, reforms data 

processing flow so that domain specific applications turn on closer to data receivers such 

as local edge servers or even IoT devices. Considered as an evolution of cloud 

computing[1], the proximity to data at its source is able to engender improvement of 

information processing, including faster insights, improved response times and better 

bandwidth availability. 

Edge devices, or the massive distribution of low-power chips, exposed to more 

peripheral perception, become operation platforms of originally energy-intensive 

artificial intelligent applications, as is depicted in figure 1. These devices are supposed 

to be deployed in any place without much maintenance. 

Naturally, researchers start to introduce machine learning models into edge devices. 

Since Google launch the TensorFlow Lite in 2017, tinyML[2] has penetrated into the 
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world of IoT, bringing sophisticated neural network models into edge computing. While 

at the same time, leading the way before data center into traffic jam. Raw data 

transmission from device itself to high performance unit is realistically too power-

consuming to be a reasonable approach. Generating actionable information locally under 

restricted processing resource becomes a prudent choice. 
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Figure 1. Machine learning model is trained on cloud server and deployed on edge devices. 

To deploy machine learning applications on edge devices, researchers from 

academia have to deal with mussy runtimes and variable frameworks. Thankfully, 

contributors from communities build up an open ecosystem for interoperable AI models, 

which makes it simple and efficiency to transport neural network models among 

platforms. Open Neural Network Exchange (ONNX)[3] is an open format for 

representing machine learning models. In our experiments, the neural network is 

abstracted into a scalable computational graph model provided by ONNX, and then 

refactored on a specific edge device. 

In this paper, to tackle the situation of limited computational resources, we attempt 

to enhance flexibility of neural network models for variable hardware constraints. In this 

paper, we propose a paradigm of neural network combination implementation as a 

primitive solution; further more, we manage to build up a general neural network 

deployment framework for edge devices. 

2. Combinational Neural Network 

Edge computing is the essential solution to the excessively centralized system. This 

paradigm tends to increase participation of data processing closer to where it is generated, 

mitigating data throughput pressure over the network. Confronted with boosting 

diversity of edge devices, we propose combinational neural network as a primitive 

exploration of hardware-adapted neural network.  

A combinational neural network (coNN) is the basic model which can generate sub-

networks according to different architectural configurations. Each sub-network is 

supposed to maintain competitive performance in accuracy and latency compared to the 

original intact network. Contrary to traditional convolutional neural network (CNN) of 

stable hierarchies and connections, coNN struggles to achieve consistent potency under 

arbitrary hardware constraints through architectural recombination and deletion. To be 

specific, coNN is able to downsize its network, e.g., depth, width and kernel size, to 

match limited computational resources and storage memory of a given chip. 
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2.1.  Architectural Design Principle 

A coNN model is a fully functional CNN model essentially and is able to deployed 

directly on unbounded computational platform. In order to forge a coNN model with 

flexible architecture of different computing resource requirements, researchers should 

follow the architectural design principles of coNN below. 

 Alterable resolution. The coNN model should be capable of incepting random 

and variable sensor data depending on the scenario. 

 Alterable depth. The coNN offers alterable scale of neural networks layers to 

construct sub-networks consistent to the storage limitation. 

 Alterable width. The coNN allows impact ranking of channels between layers 

and imposes appropriate deletions to generate sub-networks. 

 Alterable kernel size. The coNN offers arbitrary kernel sizes. 

Follow the principles above, researchers are convenient to design their own coNN 

model, matching specific scenario requirements. To illustrate real implementation of 

these design principles, we take a modification of CNN model as our example. In this 

case, the input picture size ranges from 144 to 256, which realizes alterable resolution 

instinctively; the model is divided into slices from from to back, each slice comprises 

several layers and the quantity of layers is chosen from {1, 2, 3}, which realizes alterable 

depth; the width, number of channels between layers, is decided by the compression 

ration chosen from {1, 2, 4}, which realizes alterable width; the kernel size ranges in {1, 

3, 5, 7}, which realizes alterable kernel size. 

2.2. Training Paradigm 

Following practice of CNN models, we propose a training paradigm of coNN 

implementation. As long as researchers have the experience of building up CNN models, 

it is fast-paced to adopt a few modifications to embrace coNN. To put it bluntly, 

researchers could apply a naïve and primary training paradigm, enumerating all sub-

networks of coNN and optimizing one by one from scratch. In this case, the number of 

sub-networks is the linearly decisive factor of training time complexity. Unfortunately, 

when the scale of coNN increases, the number of sub-networks boosts up exponentially. 

Thus, we have to introduce some tricky approaches to avoid computational explosion. 

We suggest researchers to enforce itemized training paradigm to traverse forest of 

coNN and its sub-networks. For example, after training the whole basic coNN, we alter 

the architectural setting of alterable depth, alterable width, alterable kernel size, and train 

the coNN under each setting step by step. 

3. Framework 

The coNN is the core of our deployment framework for edge devices. 

When we are confronted with specific business scenarios, we analyze the scenario 

requirements and design the corresponding combinational neural network. After the 

network specifications are submitted to the cloud server, the model will be trained on 

mainstream machine learning platforms like PyTorch, with alterable architectural 

configurations. As accuracy of the model reaches stable and reliable level, it will be 
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exported as combinational ONNX model, which is convenient to be deployed on variable 

hardware platform. The deployment framework is depicted as figure 2. 
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Figure 2. Neural network deployment framework. 

3.1. Model Adaptation and Testing 

Combinational ONNX models should be modified according to the hardware constraints. 

A naïve implementation of this requirement is to deploy the minimum model and 

increase model scale until emergence of performance degrading. 

Table 1. Compared with AlexNet, our prototypical implementations of combinational neural network, 
including original version and compression of 50% and 25%, achieve similar accuracy on ImageNet[4] with 
smaller model. 

Model Size 

Top-1 

ImageNet 

Accuracy 

AlexNet(baseline) 240.3MB 57.2% 
coNN(original) 48.6MB 59.8% 
coNN(50%)    23.7MB 58.2% 
coNN(25%)    10.7MB 57.1% 

We explore our primitive prototype on Qualcomm Snapdragon 810 with 3GB RAM. 

Compared with the AlexNet[5] as the baseline, our prototypical implementation of 

combinational neural network achieves stable performance with less computational 

resources, as showed in table 1. 
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3.2. Framework Compatibility 

The compatibility of our deployment framework is contingent on the versatility of 

ONNX. Open Neural Network Exchange (ONNX)[3] is an open format built to represent 

machine learning models. In our experiments, neural networks are abstracted as an an 

extensible computation graph model provided by ONNX and then reconstructed on 

specific edge device. 

4. Related Works 

There are many profound explorations of applicating machine learning models on edge 

computing platforms. Researchers tend to carry forward in two directions: first, 

improving the hardware efficiency of running a given neural network; second, fine-

tuning machine learning models by automating the architecture design process or 

proposing neural networks with more flexible and dynamic architecture. 

4.1.  Machine Learning Framework for Low Power Platform 

The most famous and prevailing platform for low power platform is TinyML[2] and 

NCNN[6]. 

TinyML, based on the consensus made across industry and academia, is a technical 

framework of machine learning model translation, especially constructing energy-

efficient neural network model for the time being. 

NCNN is an inference computing framework optimized for mobile platforms, 

supporting most deep learning models deployment of mainstream framework. 

At present, platforms like the Raspberry Pi require external power supply or built-

in battery like smartphone. Thus, we could not take it as the typical platform deploying 

TinyML model. But with the convenience of frameworks like TensorFlow, these 

platforms are intuitionistic testbed of our improvement. 

4.2. Neural Network Architecture Design 

Researchers are zealous to design ingenious architecture of neural networks to operate 

on specific hardware configurations appropriately and efficiently. For example, 

SqueezeNet[7] applies replacement of smaller filters and less channels to support 

feasible FPGA and embedded deployment; MobileNets[8] introduces model shrinking 

hyperparameters to build lightweight deep neural networks for mobile and embedded 

vision applications. Shufflenet[9] considers the direct metric, such as speed, instead of 

indirect metric like FLOPs, to conclude empirical guidelines of efficient network 

architecture. 

Most efficient neural networks adopt network pruning, while model compression 

starts to make a difference. Trained Ternary Quantization[10] intends to reduce the scale 

of the neural networks through degrading the precision of network weights into ternary 

values. 
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5. Conclusions 

Edge computing is a complement of centralized computing for users to act on data at the 

source. The massive distribution of low-power chips on Android and IOS devices, or 

even manufacture line micro-controller units, are confronted by the noisy sensor data, 

which is impossible to analyze and utilize efficiently. 

However, industry encounters computational resource constraints of machine 

learning on edge devices, e.g., limitation of memory and processing power, especially 

only a limited number of feature channels is affordable under a given computation budget. 

To tackle this situation, we attempt to enhance flexibility of neural network models for 

variable hardware constraints. In this paper, we propose a paradigm of neural network 

combination implementation as a primitive solution; further more, we manage to build 

up a general neural network deployment framework for edge devices. 
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