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Abstract. A Legendre polynomial approach (PA) is proposed to forecast a thin 
film of transverse-type rectangular piezoelectric transformer (PT) performance 
with common ground electrodes located on its whole bottom surface, fabricated 
from a PZT5A (lead zirconate titanate) ceramic material. Based on the automatic 
incorporation of boundary conditions into the equations of motion and the 
development on a basis of orthonormal polynomials of the fields, formulations 
calculated analytically are simulated numerically. Then, series and parallel 
resonance frequencies, profiles of the mechanical displacement and the electrical 
potential are obtained for the PT. Our results are validated through a comparison 
with the three-dimensional Finite Element Method (FEM) ones. Furthermore, the 
mechanical tethers positions are located at the PT's junctions. 

Keywords. Piezoelectric transformer, Polynomial approach, Modal analysis, 
Plane-stress hypothesis, Finite element method. 

1. Introduction 

Development of the mathematic application gives now several advantages in micro-

fabrication technology. In electronic equipments, optimisations of the parameters into 

the devices require a modeling, design and the experimental validation in Laboratory 

[1]. In micro-robotic, requirements are conducted through the power density, actuation 

forces, operation frequencies, etc. Miniaturized piezoelectric transformers are a device 

permits to balance higher step frequencies with larger ranges of motion [2]. They are 

entirely dedicated to the galvanic isolation for DC/AC or DC/DC converter [5] and to 

the systems of electronic or electromechanical that requires voltage source boosted or 

bucked [4]. They exhibit a good efficiency at resonance over the conventional 

electromagnetic ones [5]. 
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This work is motivated by ongoing challenges of PT with common ground 

electrodes (PTCGE) commercialized in monolithic micro-fabrication as presented in 

figure 1. Recently, approaches applied on the PTCGE are not finding the right 

parameters for a correct operation using either the Hamilton’s principle [4] or 

equivalent circuit [7] model. Moreover, the FEM (finite element method) requires high 

storage capacity and not appear mathematic expressions [3]. In this paper, the 

polynomial approach (PA) which a semi-analytical method that is at time analytic and 

numeric is applied to study the free vibration modes of this PTCGE. It has been 

successfully used for Rosen-type PT [3] analyzing. 

2. Structure Description 

2.1.  Studied PT 

Figure 1 shows the studied PT with respectively L=25 mm, W=5 mm, H=1.7 mm the 

length, width and thickness. At the driving part, it is polarized along its thickness 

direction by an input voltage of amplitude Vp=1 Volt and connected to a load resistance 

RL at the secondary electrodes with an output voltage Vs. The L2-L1 defines the gap. 

The structure is made of lead titanate zirconate (PZT5A) ceramic material and of class 

crystal hexagonal 6-mm. The whole bottom surfaces are completely covered with 

ground electrodes and different patterns of electrodes are deposited on the upper 

surface to create the input and output parts [6]. The x3 direction coincides to the 

crystallographic Z-axis. Temporal dependence is exp(jωt), ω the angular frequency and 

t the time, j2 = - 1. Applied change of variables are: L/xq 11 ; W/x2q 22  ; H/x2q 33 . We 

admit the normalization systems E
11

)R(
ij

)R(
ij C/TT   for the stress tensor where 

33C/
2

13C11C
E
11C 

 and 
33ε/

(R)
iD

(R)
iD 

 for the electrical displacement, R = 1, 2, 3 the 

region number. We assume 0

(3)
2

(1)
2

(3)
1

(1)
1 EEEE  for the electric field components 

and we normalize the angular frequency as pω/ωΩ   /ρ11)2πpω C
EL(  is the one-

dimensional thickness resonance angular frequency and ρ=7750 Kg/m3 the mass 

density. The elastic stiffness ( 2
N/m ) are:    7.52  ;  7.54  ;  12.1  10 10 10

101010

13C12C11C  ; 

 10 10
1010

CC    2.2666  ;   11.133   

Figure 1.  Piezoelectric Transformer with Common Ground Electrodes (PTCGE) description 

2.2.  Boundary and Continuity Conditions 

The following assumptions are adopted: the thicknesses of electrodes are neglected; we 

suppose that the mechanical outer surfaces are mechanically free. That means: 
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3. Mathematical Resolution 

Electrical field applied along the q3 direction to the driving parts generates a 

mechanical deformation induces back an electric energy to the secondary electrodes [5] 

given by the equations of motion: 
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S . S defines the global structure. To 

automatically incorporate the boundary and continuity conditions into (1) and (2), the 

rectangular windows functions Π  defined by: 
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are used. Then, the mechanical stress and the electrical displacement are respectively: 
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The mechanical displacement )R(
k
u  and electrical potential )R(

Φ  components are 

developed as follow: 
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direction is introduced by the )13q(
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4. Analytical Results - Multimodal Analysis 

The series resonance frequencies Ωr are obtained by vanishing the load resistance (RL = 

0) and letting the driving electrodes short circuited (Vp=0). The equation (11) becomes:  
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Besides, by short-circuiting the input part, we get the parallel resonance frequencies 

Ωa allowing the receiving electrodes open (iS=0). From (11), we have (13) where Id 

denotes the identity matrix. 
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5. Numerical Simulation 

5.1 PA Convergence 

Summation over m and n is numerically truncated to the finite values M and N 

respectively. The PA convergence is reached for M and N increased with no variations 

of the frequencies values. Presented in tables 1 and 2, the first 4 modes convergence is 

obtained from the orders of truncation M = N = 10.  

Table 1. Resonance frequencies 

2D fr, PA (*105Hz)

Orders of truncation Mode 1 Mode 2 Mode 3 Mode 4 

M=N=3 0.5717 1.1350 1.6398 2.1397 

M=N=7 0.5855 1.1339 1.6651 2.1175 

M=N=10 0.5863 1.1340 1.6647 2.1174 

M=N=12 0.5863 1.1340 1.6647 2.1174 

M=N=15 0.5863 1.1340 1.6647 2.1174 

---------------------------------------------------------------------------

3D fr, FEM (*105Hz) 0.5865 1.1337 1.6622 2.1160 

frε (%) 0.0341 0.0265 0.1502 0.0661 

Table 2. Anti-resonance frequencies 

2D fa, PA (*105Hz)

Orders of truncation Mode 1 Mode 2 Mode 3 Mode 4 

M=N=3 0.5786 1.1501 1.6526 2.1402 

M=N=7 0.5893 1.1493 1.6814 2.1213 
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M=N=10 0.5900 1.1494 1.6812 2.1214 

M=N=12 0.5899 1.1494 1.6812 2.1214 

M=N=15 0.5899 1.1494 1.6812 2.1214 

--------------------------------------------------------------------------------

3D fa, FEM (*105Hz) 0.5905 1.1498 1.6783 2.1197 

εfa (%) 0.1016 0.0348 0.1728 0.0801 

 

Figure 2. Normalized electrical potentials 

 

Figure 3. Normalized mechanical displacements 

5.2 Validation of the Model and Discussion 

The resonance fr and anti-resonance fa frequencies of the first four modes found from 

the 2D PA and 3D FEM are given in tables 1 and 2. The relative errors are calculated 

as follows:  

   FEM r,fPA r,fFEM r,f100fr  *
 (14.a) 

   FEM a,fPA a,fFEM a,f100fa  *  (14.b) 

5.3 Illustration 

It is essential to predict the expressions of the fields to locate the mechanical tethers at 

the nodal points [3], of the operating resonance mode to maintain the PT’s 

performances. The expressions of the mechanical displacements are obtained from the 

coefficients of the vectors �
�,��

(�)
 given by the simulation. As presented in figure 2 and 

3, the second mode meets a zero value at the interfaces of the structure. It is confirmed 

that the mechanical stresses are continuous at qp and qs interfaces. Results obtained for 

both PA/FEM are in good agreement. In addition, the second mode of mechanical 

stress (figure 4) gives a maximum at the interfaces. The mechanical tethers should 

applied at these junctions. Sufficient functioning mode is the second longitudinal mode 

so that all vibrations give some energy density for the PT [3]. 
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Figure 4. Normalized mechanical stress vs normalized length 

A quite good agreement is found of the operating frequency with modal relative 

errors well below 1%. In opened-circuit case, figures 3 and 4 present respectively the 

profiles of the normalized mechanical displacements and electrical potentials. Results 

obtained with the PA approach are strongly matched with those found with the 3D 

FEM. Predicted boundary and continuity conditions are verified. These results validate 

our proposed polynomial approach. 

6.  Conclusion 

A mathematical development using the Legendre polynomial functions for modeling 

the transverse-type PT has been reported based on the plane-stress hypothesis. Results 

found with the 2D PA are validated and agree very satisfactorily with the 3D FEM 

results. Boundary and continuity conditions are verified. PA allows for locate the 

mechanical tethers of the transformer. In the future work, the frequency's and load's 

dependence in the electrical behaviours of the PT are in progress as well as the 

experimental validation in order to confirm our simulation results. 
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