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Abstract. Data intensive batch processing scientific workflow is a typical 
application model in the era of big data. A reasonable scheduling method can 
improve the resource utilization rate and reduce the rental cost on the premise of 
meeting the deadline requirements. In this paper, an iterative floating interval 
allocation method suitable for batch scientific workflow is proposed in the     
deadline allocation stage, and then in the resource mapping stage, a task     
scheduling algorithm considering the utilization of time gaps and minimizing the 
cost of renting virtual machines is proposed, which weighted the expected  
utilization of time slices. Experiments show that compared with similar scheduling 
algorithms, in the specified deadline time, it can not only better solve the data 
transmission bottleneck, but also better improve the execution efficiency and reduce 
the total rental cost. 
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1. Introduction 

The resource allocation and task scheduling of cloud platform for scientific workflow 

tasks has always been a research hotspot. It is an important means to optimize the 

execution efficiency, resource cost and energy consumption of multi tasks with mutual 

dependencie.  

In the era of big data, with the increasing scale of data processing and the increasing 

computing complexity, a new scientific workflow, batch scientific workflow, has     

begun to attract attention. It is usually used in data intensive applications. Because the 

massive data must rely on the distributed or cloud computing environment to speed up, 

some task nodes are modeled as batch task groups containing a large number of 

independent tasks of the same type. At present, this kind of scientific workflow has 

important applications in many big data science fields, such as signal processing,  

medical image processing, astronomical scientific computing and so on. Therefore, the 

research of more mature and perfect cloud scheduling algorithm for batch scientific 

workflow is imminent. 
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The scheduling of scientific workflow with limited execution time is the most 

common problem in reality, and at present, some achievements exist, such as the fuzzy 

set prediction model, M/M/m queuing theory model and other methods [1-2].  

Abrisami[3] proposed a PCP scheduling algorithm considering time gap, and 

Ghafarian[4] proposed a sub workflow partition scheduling algorithm. Visheratin et al. 

[5] proposed deadline genetic algorithm (CDCGA). These algorithms have their own 

emphasis on scheduling results, but there are still some problems. For example, the     

PCP algorithm ignores the gap between tasks due to the partial order relationship, and 

does not fully consider the global time gap; The improved IC-PCPD2 algorithm [6] 

proposed later allocates the gap according to the execution proportion of the task, but 

does not consider the allocated time gap in the previous path, which often leads to the 

problem that the scheduling space of the previous task is too loose and the subsequent   

is too tight. In addition, these time proportional allocation methods are oriented to  

general scientific workflow. For batch scientific workflow, the estimated execution    

time of the task group is related to the selection of virtual machines and the execution 

parallelism of subtasks, which requires additional strategies to estimate. Therefore, this 

paper proposes an iterative floating interval division method for batch scientific 

workflow, which completes the division of workflow deadlines by reasonably    

allocating time gaps. 

After the deadline is divided, the dynamic scheduling of tasks can be carried out 

according to the local deadline allocation of subtasks. In the existing workflow 

scheduling algorithm, Zhu et al. [7] proposed to schedule scientific workflow to the 

leased cloud computing cluster to maximize the utilization of the cluster. Vahid et al. [8] 

proposed two workflow scheduling algorithms: proportional deadline constrained PDC 

and deadline constrained critical path DCCP. Therefore, this paper proposes a TGbMF 

task scheduling algorithm considering the utilization of time gap, so as to optimize the 

overall execution efficiency and resource rental cost of batch workflow. 

2. Virtual Machine Type Initialization and Workflow Deadline Division 

2.1.  Determine the Initialization Virtual Machine Type and Parallelism of the Task 

Group 

In the deadline division stage, we need to consider the task volume of each task group, 

which is related to its task type and quantity. We need to initialize the virtual machine 

type and parallelism for each task group before we can estimate the execution time, and 

then reasonably allocate the deadline. 

Suppose that the cloud platform provides three types of virtual machines, including 

balanced, high CPU and high memory. Each batch group is divided into the most 

appropriate category according to its task type, and can only be adjusted at m different 

levels under this category. We are based on this common sense: when the computer 

performance is enough to support task operation, simply doubling the configuration will 

generally double the rental unit price, but the increase in execution efficiency is often 

less than twice. Therefore, the initialization method of virtual machine type is to select 

the configuration with the lowest performance of the virtual machine type. 
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Expected runtime etc is an n×m matrix, in which each a represents the expected 

execution time of a single task in the task batch ti on the virtual machine of level j under 

its category. 

For the selection of the number of virtual machines in the task batch, we consider: 

according to the current virtual machine level selection, query the ETC matrix to 

determine the estimated execution time ij
etc

 of a single task in the task batch. Let L be 

the minimum rental charging duration of the virtual machine. There are i
taskN  

independent subtasks of the same type on the task batch ti. Calculate the number of 

virtual machines with the highest parallelism based on making full use of the minimum 

rental duration resources of the virtual machine as follows: 
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2.2. Workflow Deadline Division 

2.2.1 Task Relevance Clustering 

In this paper, before dividing the deadline, the local adjacent tasks are clustered by the 

correlation degree, so that the tasks with frequent data transmission can be scheduled as 

a whole, so as to optimize the global data communication. At present, task clustering 

algorithms include hypergraph segmentation, BEA matrix transformation and DAG 

Graph Segmentation, but their time complexity is high. Therefore, this paper clusters the 

two tasks with a large amount of data transmission in order to reduce the cross-node 

communication overhead. Taking figure 1 as an example, two task packages {v1, v2, v5} 

and {v3, v4, v6} are formed. 

Figure 1. Data association degree clustering 

2.2.2 Task Deadline Partition Based on Time Gap for Batch Scientific Workflow 

Assigning time gaps to subtasks can make local task scheduling obtain greater relaxation 

space, and thus have the opportunity to choose a scheduling scheme with lower cost. A 

reasonable redistribution strategy can reduce the cost of resources in a balanced way in 

the overall scope of the workflow. This paper presents an iterative allocation method 

suitable for batch scientific workflows. 

The process of time gap allocation is a traversal process, and different traversal 

sequences will lead to different allocation results. This section adopts the method of 

iterative generation of critical path based on traversal sequence proposed by Abrisami et 

al. [3,6]. Let [1], [2] [ ]{ , , } �

l
HP HP HP HP

represent the current critical path, HP[i] is the ith task 

on the path, and l is the total length of the critical path. 

Then, time gap allocation is carried out. Suppose that the floating-point interval of 

the task is the sum of the total processing time of the task package and the time gap 
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allocated to the task package, and let i

float
v
f

be the floating interval of task i
v

. The 

derivation method is: 
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Where  is the time required for the y-th task batch to execute tasks using j 

virtual machines of u level under corresponding classes, where virtual machine type u 

and parallelism p are calculated from the initialization method in Section 2.2. 
 j  

represents the direct precursor set of task package jv , i
S  represents the software unit of 

task i
v

, whose loading time is i
S

T
, and ,i j

L
 represents the amount of data to be 

transmitted from task 
i
v  to 

j
v . 

Let EFT, FFT and LFT represent the earliest start time, the earliest completion time 

and the latest completion time of the floating interval task package. If 
 

k kk

float
v vv

FFT f LFT

, 

kv  belongs to the fixed task package. 
fix

V  is the set of fixed task packages. The total 

time gap on the critical path is calculated as: 
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 represents the time gap of the critical path, where
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The latest completion time of [ ]l
HP

 in the algorithm is generated by the deadline. The 

overall time gap of the whole path is allocated to non-fixed task groups according to the 

workload proportion of each task group. Considering that the application oriented here 

is batch scientific workflow, it is not allocated according to the proportion of the 

execution time of a single task as in the traditional scheme, but is divided according to 

the proportion of the estimated execution time of the task group (see equation 2) 

calculated under the virtual machine type and parallelism initialization mode in Section 

2.1. The specific time gap allocation formula is: 
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3. Multi Rule Fusion (TGbMF) task Scheduling Algorithm based on Local 

Deadline Assignment 

3.1 Depth Based Task Scheduling Order 

Define ℓ as a set of all schedulable task packages, initialize ℓ as {v0}, and set the depth 

of the task package i
v

as the minimum number of tasks from v0 to i
v

. If ℓ is not empty, 

divide ℓ into multiple subsets according to the depth of the task package. Select the subset 

with the minimum depth, and then select the task package with the largest and earliest 

end time as the next task package to be scheduled. After scheduling the task package 

each time, update the set of all scheduled precursor packages in ℓ. 

3.2 TGbMF Task Scheduling Method 

Based on the previous deadline division, this chapter considers three aspects: the reuse 

of the remaining time slice, the cheapest execution cost and the utilization rate of the new 

lease time slice, and obtains a better effect of improving the execution efficiency and 

reducing the lease cost through weighted integration. 

 

FNPA (Fewest amount of newly leased time priority algorithm): when scheduling, give 

priority to reusing the remaining time slices as much as possible [9], so as to improve the 

utilization of the leased time interval. Define 


i

t

v  and 


i

t

v  as the number of lease 

intervals that i
v

 is scheduled to lease and the maximum possible time interval to lease, 

respectively. The specific algorithm is as follows: 
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The virtual machine type corresponding to time slot t is 
t
 . ,

t
i
T

 represents the task 

processing time required by task package i
v

 when selecting a virtual machine of type 

t
 , ,

i
v t

T
 represents the data transmission time required when task package i

v
 is 

allocated to time slot s, 
t
T represents the installation time of the virtual machine, ,

S
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T

 

represents the installation time of the corresponding software, and L is the length of the 

billing interval. After normalization, the smaller the value of 
t

v
i


, the higher the priority, 

because it represents the smaller the interval that needs to be leased. The calculation 

method of 
t

v
i


 is: 
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LACA (Least actual cost priority algorithm ): in some cases, scheduling tasks to time 

fragments first will reduce the execution efficiency and increase the cost. For example, 

when allocating the remaining time slice with high CPU configuration to memory 

complex tasks, we must choose between time slice reuse and high execution efficiency. 

Therefore, the virtual machine instance with lower cost is preferred first. The processing 

cost of each task package is calculated as follows: 
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Where  represents the price of the virtual machine, L represents the length of the 

billing interval, and 
 i
v

 represents the set of all time slots in the time interval i
v

EFT
 to 
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D
on the virtual machine set in ω , and the algorithm for minimizing the processing 

cost is as follows: 
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NLEA (New lease expectation algorithm): when a new time slice needs to be leased, the 

lease priority can be determined by calculating the expected utilization of the new time 

slice. Let 


i

t

v  be the length of the newly leased time fragment when i
v

 is scheduled to 

time slot t, then the weighted priority on each time gap can be calculated as: 
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The smaller the  i

t

v  value, the higher the scheduling priority. Iterate the allocation 

process until all current tasks are scheduled. 

In this paper, by means of weighted fusion, the above three different factors are 

comprehensively considered, and the selection of weights is finally determined through 

the experiment of specific application scenarios, as shown in formula 11. Where, t is the 

time slot. 
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4. Experimental Results and Analysis 

This paper uses the Workflow Generator to generate the test sets of montage and 

cybershake workflows. These workflows contain 50, 100, 200, 300, 400, 500, 600, 700, 

800, 900 and 1000 tasks respectively. The real virtual machine service provided by 

Amazon EC2 is used for virtual machine modeling, and the billing unit is hour. 

4.1 Weight Selection Experiment 

a. b and c weights are tested by single factor analysis. Each time, assume that the two 

weights are 1, and test the effect of the third weight increasing from 0 to 10000. Figure 

2 and 3 shows the influence of the value of parameter a on TGbMF algorithm.  

It can be seen from figure 2 that the rent cost optimization becomes better and better 

when the value of a rises from 0 to 1, which shows that the algorithm FNPA has a good 

optimization effect. As the value of a continues to increase, the rental cost optimization 

is not obvious. This is because, with the continuous rise of value a, the algorithm is very 

dependent on using the leased time slot, but the leased time slot is limited, and it will 

ignore whether the virtual machine matches the task. 

 

P
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Figure 2.  Weight a Test Results of Workflow Montage and CyberShake 

 

Figure 3. Weight b Test Results of Workflow Montage and CyberShake 

Figure 4 shows the influence test results of parameter c. At this time, both a and b 

are taken as 1. It can be seen that the performance of c=1 and c=10 algorithms is the best. 

Therefore, this paper selects two groups of parameter combinations {a=1, b=1, c=10} 

and {a=1, b=1, c=1} to compare the experimental results again. The results show that 

when a=1, b=1 and c=10, the result of parameter combination optimization is better, 

therefore, it is selected in the subsequent experiments of this paper. 

 

Figure 4. Weight c Test Results of Workflow Montage and CyberShake 
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4.2 Comparison Experiment with Reference Algorithms 

This paper compares the proposed TGbMF algorithm with the IC-PCP algorithm using 

time gap proposed by Abrishami et al. [3,6] and the scheduling algorithm MRH using 

time gap integration proposed by Li[10]. In order to be consistent with the factors 

considered in this paper, IC-PCP algorithm adds virtual machine loading time and 

software installation time, and MRH algorithm adds task data correlation clustering 

operation. 

Figure 5 shows the comparison diagram of deadline generated by comparing the 

TGbMF algorithm with parameter values, Li's MRH algorithm and abrishami's IC-PCP 

algorithm under the same number of tasks and the same considerations. 

 

Figure 5. Comparison chart of deadline 

It can be seen from figure 5 that the total time of deadline of TGbMF algorithm is 

1.3% to 7.9% lower than that of Li's MRH algorithm, with an average of 4.8%, and 4.5% 

to 13.8% lower than that of Abrishami's IC-PCP algorithm, with an average of 10.6%. 

Figure 6 shows the total rental cost comparison chart generated by comparing 

TGbMF algorithm, Li's MRH algorithm and Abrishami's IC-PCP algorithm with the 

same number of tasks and the same considerations. 

 

Figure 6. Total service rental cost comparison chart 

Q. Zhao et al. / Research on Deadline Division and Scheduling of Batch Scientific Workflow864



As can be seen from figure 6, the overall rental cost of TGbMF algorithm is 1.9% to 

11.1% lower than Li's MRH algorithm, with an average of 6.14%, and 4.1% to 18.3% 

lower than Abrishami's IC-PCP algorithm, with an average of 13.1%. 

5.  Conclusion 

Aiming at the characteristics of batch scientific workflow with time constraints in cloud 

environment, an iterative dealine partition strategy with floating interval and a multi 

strategy heuristic algorithm TGbMF integrating time slice utilization are proposed. 

Experiments show that compared with similar scheduling algorithms, it can not only 

better solve the data transmission bottleneck within the specified dealine time, but also 

better improve the execution efficiency and reduce the total rental cost. 
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