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Abstract. At present, tight oil and gas reservoirs must adopt fracturing technology 
to obtain productivity, which will not only transform the reservoir, but also bring 
reservoir damage. Taking Chang-7 member of Ordos Basin as the research object, 
the relationship between physical properties of tight oil reservoir and fracturing 
fluid damage is analyzed based on experimental analysis of reservoir physical 
properties, cast thin sections, electron microscope scanning, X-ray diffraction and 
sensitivity test. Using the traditional damage evaluation method requires a large 
number of cores, and core resources, as a nonrenewable precious resource, have 
been paid more and more attention. Therefore, the use of prediction is conducive 
to protecting core resources, reducing experimental costs, and improving work 
efficiency. Therefore, a mathematical prediction model of RBF neural network is 
proposed, which establishes the complex nonlinear relationship between the 
physical properties of Chang 7 reservoir and fracturing fluid damage in Ordos 
Basin. Taking 22 groups of data of Chang 7 reservoir as training data, the fitting 
rate of training data is 90%. Taking the other two groups of data as detection data, 
the error between prediction and actual experiment is less than 10%. The 
prediction shows that the error inside and outside the sample predicted by RBF 
neural network is small, the prediction accuracy of the model is high, the 
generalization ability is strong, and the prediction value is closer to the value 
obtained by laboratory experiments than BP neural network, which can provide a 
good theoretical basis for fracturing fluid optimization. 
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1. Introduction 

Fracturing technology can significantly improve the productivity of a single well, and 

achieve the effect of increasing reserves and production. It is an essential technology 

for the development of low permeability and ultra-low permeability oil fields. The 

performance of fracturing fluid directly affects the fracturing performance and the 

uniform placement of proppant in the fracture, so fracturing fluid is one of the most 

important links in the fracturing process. At the same time, fracturing fluid will also 

cause damage to the formation, so the damage evaluation experiment should be carried 

out before the application of fracturing fluid, but the conventional evaluation time is 
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long, the cost is high, and the application of core resources is relatively large, which is 

increasingly unable to be met. People began to establish different empirical formulas, 

mathematical models, BP neural networks and other methods to predict the damage 

degree of fracturing fluid to the reservoir. Due to the accuracy of prediction and 

regional constraints, it is still unable to be applied on a large scale [1-8]. 

2. Reservoir Sensitivity 

When a foreign liquid that does not match or does not match its own reservoir liquid 

enters the reservoir, its chemical and physical properties are inconsistent with the 

original liquid in the original reservoir, which will cause damage to the original clay 

minerals in the reservoir. Altered, reservoir damage from exogenous fluids occurs, so 

the sensitivity characteristics of the reservoir need to be analyzed. The potential 

sensitivity factors of the reservoir mainly include rock skeleton particles, pore structure 

characteristics, clay mineral types and their contents, and their own fluid properties. 

Among them, the changes of reservoir pore structure and their own fluid properties 

caused by external operations such as construction are external potential factors, and 

the types and contents of rock skeleton particles and clay minerals are internal potential 

factors. The analysis of potential sensitivity factors of the reservoir can be more 

purposeful Evaluate the sensitivity of the target formation more accurately, and the 

sensitivity of the reservoir directly affects the damage degree of the fracturing fluid and 

the optimization direction of the fracturing fluid. 

Sensitive minerals refer to the sensitive minerals when the external conditions of 

the reservoir change. When external temperature, pressure, and fluid properties change, 

the physical and chemical properties of the minerals themselves change accordingly, 

which can lead to a decrease in reservoir permeability and affect the permeability of the 

reservoir. Clay minerals, non-clay minerals and formation granular minerals are all 

sensitive mineral. 

3. Physical Properties of Reservoir 

Through the content statistics of clastic components of rock samples, according to the 

triangle classification diagram method, it is concluded that the main rock type of Chang 

7 reservoir in the study area is gray ~ dark gray fine-grained arkose, containing a small 

amount of lithic arkose (figure 1). According to the identification results of rock slices, 

feldspar in sandstone is the main mineral composition, quartz is the secondary, the 

content of rock debris is the least, and the content of biotite changes greatly, among 

which metamorphic rock debris is the main rock debris, followed by igneous rock and 

sedimentary rock debris. The heterobase is mainly argillaceous, with a content of 0 ~ 

15.0%, and the average content is 3.4%; The cements are mainly carbonate minerals 

(5.5%), quartz enlargement (0.5%), feldspar enlargement (0.4%), and clay minerals 

(0.6%). According to the physical property data, the porosity of Chang 7 reservoir 

ranges from 1.18% to 16.40%, with an average of 7.12%; Permeability (0.01~5.77)mD, 

average 0.48mD. According to the distribution histogram of porosity and permeability, 

the main range of porosity of Chang 7 reservoir is 3% ~ 12%, accounting for 77.9% of 

the total samples, and the main range of permeability is (0.01 ~ 0.7)mD, accounting for 

80.8% of the total number of samples. Mercury intrusion method is selected to study 
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the characteristics of pore structure. Parameters characterizing pore throat size: 

displacement pressure reflects the concentration degree of rock pores and throats and 

the size of such pores and throats (Wang Yuncheng, 2004). The smaller the 

displacement pressure is, the better the physical properties of the reservoir are. The 

displacement pressure range of Chang 7 reservoir in the study area is 0.429 ~ 8.231 

MPa, with an average of 3.938 MPa, and the maximum pore throat radius is 0.091 ~ 

1.746 μm. Average 0.513μm. The pore throat changes greatly. Cementation makes 

pores smaller, in which feldspar has undergone partial dissolution modification [9,10]. 

4. Physical Properties of Reservoir 

RBF neural network is a forward network with three-layer structure: the first layer is 

the input layer, which contains many input nodes, and the number of input variables 

can determine the number of nodes; The middle layer is the hidden layer. Generally 

speaking, empirical formulas based on input layer and output layer are used. The 

number of counters in this layer is determined by the number of points, and the implicit 

elements in this layer use nonlinear transformation functions. The last layer is used as 

the response input data, that is, the output layer. Information can be transmitted 

between the first two layers. Similarly, information can also be transmitted between the 

latter two layers, while the input layer cannot pass the information directly to the last 

layer beyond the middle layer. The information transmission between the first two 

layers and the second two layers is different. The former is non-linear and the latter is 

linear. 

Radial basis function (RBF) function is a scalar function with radial symmetry as 

the center. The usual definition is a monotonic function (because the distance is radial 

isotropic) that represents the radial distance (usually Euclidean distance) between the 

training sample and the data center. RBF is a commonly used kernel function. It is the 

most common kernel function in support vector machine model classification. 

Commonly used Gaussian radial basis functions: 

K�x, x′� = exp �− ∥����∥

���
�  γ = −

�

���
                                         (1) 

In the above formula, ∥ � − �′ ∥  can be regarded as the Euclidean distance of the 

square between two eigenvectors. X 'is the center of the kernel function, σ As a free 

parameter, it represents the width parameter, which is used to constrain the radial range 

of the function. An equivalent but simpler definition is to set a new parameter, whose 

expression is: 

           K�x, x′� = exp�γ ∥ x − x′ ∥�                                                  (2) 

Because the value of RBF kernel function becomes smaller and smaller with the 

decrease of distance, and its value is between 0 (limit) and 1 (when x=x '), it is a ready-

made similarity measurement representation. The characteristic space of kernel has 

infinite dimensions; about σ= 1. Its expansion formula is: 
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The design idea of the network is as follows: RBF function is used to construct the 

space of hidden layer nodes, and the input parameters are directly mapped to the hidden 

layer space, so as to determine its basis function center. Because the signal between the 

hidden layer and the output layer of the network adopts the linear transmission mode, 

the output of the network can use the linear weighted sum of the output of its hidden 

layer nodes. The relationship between input layer and output layer in the network is a 

nonlinear mapping, and its output has a linear relationship with respect to variable 

parameters. Generally, linear equation or recursive least square method is used to solve 

it, so as to improve the weight of the network, improve the learning speed, and avoid 

the problem of falling into local minimum. The topology of the network is shown in the 

following figure 1. 

 

Figure 1. RBF network topology diagram 

5. On Applications of RESERVOIR Sensitivity’s Prediction 

In order to improve the accuracy of the RBF neural network fracturing fluid damage 

model, it is necessary to replace a large number of samples for learning. The learning 

samples should correctly reflect the relationship between the input and output layers of 

the neural network. The above research shows that permeability, porosity, kaolinite, 

illite, chlorite, illite/montmorillonite interlayer, feldspar, quartz and fracturing fluid 

damage have nonlinear correlation. This time, the core analysis data of Chang 7 

reservoir in B oilfield of Ordos Basin are selected, of which 23 sample data are used to 

study the model. The training shows that the result is stable after 20 iterations, as 

shown in figure 2. It shows that the training can fit the original data well, and the 

coincidence rate reaches more than 98%, achieving the expected effect. 

Select another two sample data from other well areas to test the trained model and 

compare it with the data of indoor experiment, as shown in table 1. The prediction 

result is close to the real result, and the error of the prediction result is less than 5%. 

From the evaluation indicators, the error of RBF neural network is significantly smaller 

than BP neural network. Because RBF local approximation can simplify the 

calculation, its running time is also short. It is a prediction model for fracturing fluid 

damage [11]. 
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Table 1. EXPERIMENTAL analysis sensitivity results and the corresponding parameters of samples 

Muster 

Input layer Output layer 

K 

% 

I 

% 

C 

% 

I/M 

% 

Q 

% 

F 

% 

kf 

10-3µm2 

Φ 

% 

DR 

 

1 9.0 38.0 8.0 45.0 35.0 54.0 27.5 14.0 0.2 
2 13.0 37.0 9.0 41.0 44.0 36.0 1.8 7.7 0.6 
3 3.0 75.0 9.0 13.0 40.0 42.0 0.2 8.5 0.6 
4 10.1 34.6 7.4 47.9 43.0 46.0 2.4 11.2 0.7 
5 33.9 23.8 6.0 33.8 32.0 35.0 2.4 13.4 0.0 
6 10.0 0.0 0.0 90.0 42.0 28.0 0.2 8.0 0.8 
7 23.0 26.0 13.0 36.0 43.0 26.0 3.1 10.5 0.8 
8 0.0 67.5 0.0 32.5 44.0 40.0 1.3 9.2 0.5 
9 0.0 32.0 0.8 67.3 55.0 36.0 0.1 7.4 0.4 

10 70.3 0.0 29.8 0.0 44.0 30.0 0.3 2.0 0.0 
11 72.4 0.0 27.6 0.0 44.0 30.0 11.1 2.1 0.5 
12 26.3 22.8 6.2 43.4 29.0 32.0 53.1 18.8 0.5 
13 83.0 6.0 0.0 11.0 54.0 31.0 3.7 12.7 0.4 
14 74.7 13.5 8.8 3.0 51.0 40.0 1.7 11.6 0.5 
15 14.5 47.0 10.8 27.7 29.5 50.4 10.7 12.3 0.3 
16 42.5 26.0 11.0 40.5 34.0 59.0 0.5 4.8 0.2 
17 66.0 9.0 8.0 16.0 52.0 46.0 0.5 8.9 0.4 
18 4.3 2.0 1.1 0.6 40.0 39.0 15.7 16.3 0.0 
19 10.0 45.0 31.0 13.0 30.0 15.0 3.1 11.2 0.5 
20 75.0 0.0 0.0 25.0 36.0 26.0 2.7 14.2 0.7 
21 65.3 9.3 17.8 7.7 84.0 12.0 0.6 20.5 0.7 
22 9.0 43.2 8.0 45.0 43.2 32.7 27.5 16.0 0.6 
23 13.0 37.0 9.0 41.0 43.5 33.1 1.81 7.7 0.7 

(Φ:porosity, kf: permeability , I: illite, K: kaolinite, C: chlorite, Q: quartz, F:feldspar, 

I/M:illites/montmorillonite interstratified,DR:damage rate of water sensitive, DG: damage grade) 

  

Figure 2.  Cumulative iteration error and Training data 

6. Conclusion 

In order to predict the damage of fracturing fluid to the reservoir, based on the physical 

property data of the reservoir, 8 influencing factors including porosity, permeability 

and clay mineral value are selected for data mining. These indicators can 

comprehensively reflect the physical property of the reservoir. 

A fracturing fluid damage prediction model based on RBF is established. 

Compared with BP prediction model, this model can approach any nonlinear function 

from any accuracy, has the characteristics of self-learning, self-adaptive and self-
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organization, and has strong prediction accuracy and generalization ability. It has 

certain advantages and reliability in predicting damage rate. 

When building the RBF model, the relevant parameters (the center and width of 

the radial basis function, the weight from the hidden layer to the output layer) are three-

layer. After 20 iterations, the result is stable, and the fitting degree of the original data 

exceeds 98%. In the future, the parameters that affect the prediction effect of RBF 

model can be optimized by combining particle swarm optimization algorithm, genetic 

algorithm, annealing algorithm and other optimization algorithms to avoid falling into 

local extreme value problem 
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