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Abstract. Broad Learning System (BLS) is a very fast and effective discriminative 
learning which is developed by C. L. P. Chen, Z. Liu and others. It avoids the 
shortcomings of complex model design and large amount of calculation in deep 
learning. This paper studies the approximation capability of BLS for continuous 
functions defined on a compact set. It is proved that if the activation function of the 
enhancement node of BLS is not polynomial, for any continuous function  

( ) ( )f x C K defined on the compact set K ,there is
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0  , , 'nk N mq N   ,and parameter set w , so that 
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2
( ) ( )

w
f x f x   . A 

reconstructed model of BLS which is combined the CNN network with the BLS is 
applied to numerical experiments. The semi-supervised broad learning system(SS-
BLS) and its algorithm are proposed. Then, SS-BLS and convolution function are 
combined to establish SS-CBLS, the numerical experiments of SS-CBLS on face 
classification are carried out by ORL and Yale face database respectively 
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1. Introduction 

In 2018, C. L. P. Chen and Z. Liu [1] developed a very fast and effective learning system, 

that is, broad learning system (BLS). It is a fast and accurate learning without deep 

structure. BLS structure is very suitable for modelling and learning in big data 

environment [2-6].  

The BLS contains a feature layer, an enhancement layer and an output layer. The 

following is the BLS build process [7-9].  

(1) Giving the training data ( ){ , } N M C
X Y R

 

 .The nonlinear transform function 

mapping ( ), 1,2, ,i x i n  �  is used to generate the i th set of feature mappings 
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W   is a randomly matrix and bias matrix. All feature 

nodes are combined and written as 
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 � , here N  is the number 

of samples, nk  is the number of all feature nodes.     

(2) Nonlinear functional transformation ( )
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  is applied on n

Z  to generate enhanced 

nodes ( )
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bias matrix. m  is the number of groups of enhanced nodes. All enhanced nodes are 

combined and written as
1 2
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 � ,where mq is the number of 

nodes. 

(3) Let ( )
[ | ]

n m N nk mq

A Z H R
 

   . Here nk mq  is the number of all nodes. 

(4) Thus, the output of BLS m

Y AW , where m

W  is the weight connecting the 

feature nodes and enhanced nodes to the output layer. A denotes the pseudo-inverse 

operation, which is calculated by the following equation 1
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The BLS network becomes a linear transformation from the input (feature + 

enhanced) layer to the output layer, as shown in figure 1.  

 

Figure 1.  Construction of BLS 

2. Approximation Capability of BLS 

C. L. P. Chen et al. used the method of probability expectation to obtain that BLS is a 

nonlinear function approximation on measurable sets [10]. They also gave the framework 

of several BLS variants and models [11-13]. In this paper, it is proved that for any 

continuous function which is defined on any compact set, it can be approximated by BLS 

with any given accuracy if the activity function of BLS is not a polynomial. A conclusion 

is drawn that on a measurable set, any measurable function which can be approximated 

by BLS if the activity function of BLS is not a polynomial.  

Suppose that   is bounded feature mapping function and   is activity function. 

Then, the output function of BLS has the following form 
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Theorem: For any continuous function ( ) ( )f x C K  which is defined on a compact 

set K , there is a the output function of BLS ( )wf X  such that 
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That is, for any 0,  there exist nk N  and 'mq N  such that
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Proof. Supposing that 
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which connects enhanced nodes m

H  to the output layer. Let 
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Considering that the feature mapping function   is bounded, and that ( ) ( )f x C K
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Thus, for any continuous function ( )f x  defined on a compact set K ,it can be 

approximated by ( )wf X ,which means that ( )wf X is dense in ( )C K . 

Corollary: For any ( ) ( )f x C K ,supposing that P  is a measurable function defined 
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Proof: According to Holder��  inequality [17],one can get that 
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Where, ( )  is a measure of the measurable set  . 
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Remark: this corollary is also the approximation conclusion of BLS on measurable 

sets which is proposed by C. L. P. Chen, Z. Liu and S. feng [12]. 

3. CNNBLS and Numerical Experiment 

Since We combine broad learning system with convolution network. The principle vector 

of the image is used in the feature node of broad learning system. In the enhanced nodes 

of broad learning system, the main eigenvector corresponding to the convoluted image 

is adopted. The construction of CNNBLS is showed in figure 2.  

 

 

Figure 2. Construction of CNNBLS 

Table1. Algorithm of CNN Broad Learning System 

1、PCA method is used to get features as feature nodes from input samples X ; 

2、for i=1 : k 

(1) Convolute the input sample with the function; 

(2) Feature extraction in (1) by PCA as enhanced nodes 

3、Use formula 1( )T T
W D AA A Y



  , to calculateW . 

The ORL and Yale databases are adapted respectively: 1 photo per group for test 

data, the rest for training data; then 2 photos per group for test data, the rest for training 

data; and so on, until to 8 photos per group for test, the rest for training. Each test is for 

1000 times, and the average is taken. Using these ways to compare CNNBLS and the 

traditional PCA method. It can be observed that the accuracy of the CNNBLS is much 

higher than the traditional PCA method. The algorithm of CNN-BLS is in table 1.  

In the following, we compare the number of features required by the CNN-BLS and 

the traditional PCA method. As it can be seen from the figure 3 and 4 below, the number 

of features in CNN-BLS is much smaller than that of the traditional PCA method. 

From the numerical experiments, it is clear that CNN-BLS is a fast and effective 

method for pattern recognition. It has much less number of features and the much higher 

accuracy are than the traditional PCA method. 
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(a) ORL database                                  (b) Yale database 

Figure 3.  Accuracy in ORL and Yale 

    

(a) ORL database                                   (b) Yale database 

Figure 4.   Number of features in ORL and Yale 

4. Semi-supervised CBLS on Manifold  

The main idea of semi-supervised is to introduce a large number of unlabelled samples 

into the model training under the condition of few labelled samples, which can 

effectively avoid the performance problem of supervised learning [18]. In [18], Zhao H, 

Zheng J, Deng W and Song Y. proposed an improved the loss function of BLS. 

                      ( )T T
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�                                     (9) 
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where, hn For the sum of the number of enhancement nodes and feature nodes,
h
n
I is 

unity matrix with hn order. If A has more columns than rows, then 
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We combine the SS-BLS and convolution function to construct SS-CBLS. The 

algorithm of SS-BLS is in Table 2. The activation function of CNN hidden layer selects 

Softmax function, and the feature node of SS-CBLS feature selects the feature of labelled 

sample points. The enhanced node uses all samples and CNN convolution function to 

convolution and pooling, and finally uses Softmax activation function. We calculate 

Laplacian matrix L with original data and convolutional data of 
i
x and

j
x , matrix A  
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with feature nodes, convolution and con-volution features as enhanced nodes. The 

structure of SS-CBLS is shown in figure 5. 

 

Figure 5.  Structure of SS-CBLS 

Table 2.  Algorithms of SS-CBLS 

Enter: Labelled Samples��� , ��� � ��� , 	�����
� ; Unlabelled Samples�� � �������

�  

output: mapping functions for SS-CBLS
: ��� → ���

1. Sample with Labelled �� and unlabeled ��. Laplacian matrix is Calculated.

2. The feature nodes ��, the convolution and convolution features as enhanced nodes �� are 

constructed, and the output matrix is calculated by � � ���|��� ∈ �	�
���	�
���.

3. Weights are obtained using the manifold regularization framework �∗. 

4. Calculate the mapping function
� � �����∗ to estimate the unlabelled.

 The ORL and Yale databases are adapted respectively to compare the performance of 

SS-CBLS and traditional CNN. Each method is run independently 100 times. The results 

of the two experiments on the Yale database are shown in table 2. 

Table 3.  The comparison of experimental results on Yale 

model Test Precision (%) Test Precision 

Variance (%)

Training Time (s) 

CNN 86.67 7.78 4.27 

SS-CBLS 93.33 1.10 0.42 

From table 3, we can see that the average test accuracy, test variance and average 

training time of SS-CBLS are better than the traditional CNN. SS-CBLS has a good 

accuracy and efficiency for Yale database, and can achieve better semi-supervised 

classification of Yale data. 

We select one photo in each group as the test data in the Yale database, and the rest 

is the training data; 2 photos for test data, the rest for training data, and so on, until each 

group selected 10 for the test, the rest for training. 1000 times per test, average the 

accuracy. In figure 6, the horizontal axis represents the number of convolution kernels, 

and the vertical axis represents the corresponding accuracy. It can be observed that the 

accuracy of SS-CBLS is generally higher than that of the corresponding traditional CNN 

in Yale database. And as the change of training samples and convolution kernels in each 

group, the accuracy of traditional CNN is more affected than it of SS-CBLS. 
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(1)                                                           (2)  

 

(3)                                                      (4)  

 

(5)                                                       (6)  

Figure 6. Accuracy between SS-CBLS and CNN on Yale 

The experimental results show that SS-CBLS can more effectively extract data 

features from different data, so as to ensure the accuracy of the test and reduce the 

training time of SS-CBLS. It also shows that SS-CBLS has high stability and strong 

adaptability. Compared with the traditional CNN, SS-CBLS has a simple structure and 

only performs convolution, pooling and Softmax operations in the enhanced nodes. In 

addition, SS-CBLS not only retains the features of the convolutional image, but also 

retains the features of the original image at the feature nodes, while CNN only extracts 

features from the convolutional image.  

5.  Conclusion 

BLS is based on RVFLNN. It is a fast and accurate learning without deep structure. It  

is obviously superior to the existing deep structure in learning accuracy and 

generalization ability. In this paper, the method of nonlinear functional approximation is 

adopted to prove that BLS can approximate a given function with arbitrary precision  

on a given compact set. The corollary is get that BLS can also be approximated by 

probability expectation on the measurable set. This inference is also a main conclusion 

of [12]. Numerical experiments are also carried out on CNN-BLS on ORL and Yale 

databases respectively. It is compared with traditional PCA methods. Then, a semi-

supervised BLS (SS-BLS.) based on manifold regularization framework is proposed.  
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We combine SS-BLS and convolution function to establish SS-CBLS, and use ORL  

and Yale face database to study the problem of face classification on regular manifold. 

Experimental results show that SS-CBLS can perform better classification tasks in a 

simple semi-supervised environment than traditional CNNs. 
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