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Abstract. Broad Learning System (BLS) is a very fast and effective discriminative
learning which is developed by C. L. P. Chen, Z. Liu and others. It avoids the
shortcomings of complex model design and large amount of calculation in deep
learning. This paper studies the approximation capability of BLS for continuous
functions defined on a compact set. It is proved that if the activation function of the
enhancement node of BLS is not polynomial, for any continuous function

f(x) e C(K) defined on the compact set K ,there is lim Hf(x) - j;v(x)Hi =0 ,thatis
g
nk—w
Ve>0,3nkeN,mgeN',and parameter set w, so that Hf(x)—fw(x)Hi <e.A

reconstructed model of BLS which is combined the CNN network with the BLS is
applied to numerical experiments. The semi-supervised broad learning system(SS-
BLS) and its algorithm are proposed. Then, SS-BLS and convolution function are
combined to establish SS-CBLS, the numerical experiments of SS-CBLS on face
classification are carried out by ORL and Yale face database respectively
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1. Introduction

In2018, C. L. P. Chen and Z. Liu [1] developed a very fast and effective learning system,
that is, broad learning system (BLS). It is a fast and accurate learning without deep
structure. BLS structure is very suitable for modelling and learning in big data
environment [2-6].

The BLS contains a feature layer, an enhancement layer and an output layer. The
following is the BLS build process [7-9].

(1) Giving the training data {X,Y} e R"*® The nonlinear transform function

mapping ¢,(x),i=1,2,---,n is used to generate the i th set of feature mappings
Z,=p,(XW, +B,) ,where W, , B, is a randomly matrix and bias matrix. All feature

nodes are combined and written as Z" =[Z,,Z,,---,Z,]€ R"™, here N is the number
of samples, nk is the number of all feature nodes.
(2) Nonlinear functional transformation &, (-) is applied on Z" to generate enhanced

nodes H; = f_,.(Z”Wh/ +ﬁh,) , Where Wh, ,ﬂh, (j=1,2,---,m) are randomly matrix and
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bias matrix. m is the number of groups of enhanced nodes. All enhanced nodes are
combined and written as H” =[H,,H,,--,H, ] € RV where mq is the number of
nodes.

(3)LetA=[Z"|H"]e RV  Herenk +mq is the number of all nodes.

(4) Thus, the output of BLS Y = AW"™, where W" is the weight connecting the
feature nodes and enhanced nodes to the output layer. 4" denotes the pseudo-inverse
operation, which is calculated by the following equation 4" = lim{(A7 + A4 AT

The BLS network becomes a linear transformation from the input (feature +
enhanced) layer to the output layer, as shown in figure 1.

2,2, ZW, ~8)) =1 _,m

Figure 1. Construction of BLS

2. Approximation Capability of BLS

C. L. P. Chen et al. used the method of probability expectation to obtain that BLS is a
nonlinear function approximation on measurable sets [10]. They also gave the framework
of several BLS variants and models [11-13]. In this paper, it is proved that for any
continuous function which is defined on any compact set, it can be approximated by BLS
with any given accuracy if the activity function of BLS is not a polynomial. A conclusion
is drawn that on a measurable set, any measurable function which can be approximated
by BLS if the activity function of BLS is not a polynomial.

Suppose that ¢ is bounded feature mapping function and & is activity function.

Then, the output function of BLS has the following form
100 =3 mpX0W, +5,) 43w, 52, + ) (0
Theorem: For any cl(_)ntinuous function /:(x) € C(K) which is defined on a compact
set K, there is a the output function of BLS £, (X) such that
Tim [/ (x) = £, (0]} =0 )

mg—o

That is, for any Ve&>0, there exist JInkeN and mgeN' such that
lre-£.0f; <e

Proof. Supposing that w, =[w, ,---,w, ] is the weight matrix which connects

ay Ay,

feature nodes Z" to the output layer, and that w, =[w, ,---,w, ] is the weight matrix
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which connects enhanced nodes H™ to the output layer. Let

[, (X) = Zw PXW, +B,), £, (X)= Zwbé(ZW +5,)= ZWbH(X W,.B,) -

Jj=1

Taking that H (X, Wh/ , ﬁh/ )= f(z P(XW, + B, )W;', + ,Bh/ ) into account. Therefore

i=1

LX) =1, (X)+ [, (X) 3)
Then

|- 1,0} =1 e0- £, )~ £, (X)) 4)
Letthat £,(x) = £(x)— £, (X) then [£(x)~ £, (X[} =[£,(0) £, 0.

Considering that the feature mapping function ¢ is bounded, and that f(x) € C(K)
. Then f,(x) = f(x)— f, (X) which is bounded and integrable function on a compact set

K . According to [14,15] ,for any V& > 0 ,there is £, (x) € C(K) < L’ (K ) ,such that
£
PACRNACH (5)

N d
f,(x) has the following form [16], f,(x)= ZasH g(xw, +1) . According to

s=1 t=1

[16], for any Ve > 0.,if that f,(x) € C(K)and that H (X, Wh/ ,ﬂhj ) is not a polynomial,

there are w, and 4, such that

[, ol <2 ©)
That is

w

W

<|£- L@ +||fb<x> e (7)

Thus, for any continuous function f(x) defined on a compact set K ,it can be
approximated by 7, (X) ,which means that f, (X)is dense in C(K).

Corollary: For any f(x) € C(K) ,supposing that P is a measurable function defined
onQ and 0< P(x)<1, there is that lim E(|f(x)-£,(X)],)=0.

Proof: According to Halder inequality [17],0ne can get that
E(|f )= 1,0, = [ £ 0= £,(X), Px)eke

-k (o)
: (J.Q"f(x)_f‘(X)"i dx)%

s(j P dx) <e(uQ))* <e, (8)

Where, £(Q) is a measure of the measurable set Q .
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Remark: this corollary is also the approximation conclusion of BLS on measurable
sets which is proposed by C. L. P. Chen, Z. Liu and S. feng [12].

3. CNNBLS and Numerical Experiment

Since We combine broad learning system with convolution network. The principle vector
of the image is used in the feature node of broad learning system. In the enhanced nodes
of broad learning system, the main eigenvector corresponding to the convoluted image
is adopted. The construction of CNNBLS is showed in figure 2.

G

Figure 2. Construction of CNNBLS
Tablel. Algorithm of CNN Broad Learning System
1. PCA method is used to get features as feature nodes from input samples X ;
2. fori=1:k

(1) Convolute the input sample with the function;
(2) Feature extraction in (1) by PCA as enhanced nodes

3. Use formula W =(AD+ AA4" )" A"Y , to calculate W .

The ORL and Yale databases are adapted respectively: 1 photo per group for test
data, the rest for training data; then 2 photos per group for test data, the rest for training
data; and so on, until to 8 photos per group for test, the rest for training. Each test is for
1000 times, and the average is taken. Using these ways to compare CNNBLS and the
traditional PCA method. It can be observed that the accuracy of the CNNBLS is much
higher than the traditional PCA method. The algorithm of CNN-BLS is in table 1.

In the following, we compare the number of features required by the CNN-BLS and
the traditional PCA method. As it can be seen from the figure 3 and 4 below, the number
of features in CNN-BLS is much smaller than that of the traditional PCA method.

From the numerical experiments, it is clear that CNN-BLS is a fast and effective
method for pattern recognition. It has much less number of features and the much higher
accuracy are than the traditional PCA method.
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Number of test images

(a) ORL database (b) Yale database
Figure 3. Accuracy in ORL and Yale

(a) ORL database (b) Yale database
Figure4. Number of features in ORL and Yale

4. Semi-supervised CBLS on Manifold

The main idea of semi-supervised is to introduce a large number of unlabelled samples
into the model training under the condition of few labelled samples, which can
effectively avoid the performance problem of supervised learning [18]. In [18], Zhao H,
Zheng J, Deng W and Song Y. proposed an improved the loss function of BLS.

Ly s = op" + ATC(Aﬂ* - )7) + lATLAﬂ* )

Here, A=[Z" | H"], @is the restriction of #, Lis a Laplacian matrix, 4 is a trade-

off, C,is punishment parameter. 4" is a superior solution which is satisfied the system

of equations e = a(x,)" -y ,where y! is the output of the labelled sample,i=1,...,/.

S can be obtained for the derivation of the objective function

B =01, + A'CA+24" LAY A'CY (10)

where, 1, For the sum of the number of enhancement nodes and feature nodes, Inh is
unity matrix with #, order. If 4 has more columns than rows, then

B =470, +CAA" + ALAA") ' CY (11)

We combine the SS-BLS and convolution function to construct SS-CBLS. The

algorithm of SS-BLS is in Table 2. The activation function of CNN hidden layer selects

Softmax function, and the feature node of SS-CBLS feature selects the feature of labelled

sample points. The enhanced node uses all samples and CNN convolution function to

convolution and pooling, and finally uses Softmax activation function. We calculate
Laplacian matrix L with original data and convolutional data of x; and x, , matrix 4
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with feature nodes, convolution and con-volution features as enhanced nodes. The
structure of SS-CBLS is shown in figure 5.

Output ¥

[¢azz, 2w, <500 -1 m

ar Con with f
Input data X :\f. \":

Figure 5. Structure of SS-CBLS

Table 2. Algorithms of SS-CBLS
Enter: Labelled Samples{X;, ¥;} = {x;, ¥;}}_,; Unlabelled SamplesX,, = {x;}*,
output: mapping functions for SS-CBLSf: R™ — R™
Sample with Labelled X; and unlabeled X,,. Laplacian matrix is Calculated.
The feature nodes Z™, the convolution and convolution features as enhanced nodes H™ are
constructed, and the output matrix is calculated by A = [Z*|H™] € R(tFWx(k+ma)
3.  Weights are obtained using the manifold regularization framework 8*.
4. Calculate the mapping functionf; = a(x)B* to estimate the unlabelled.

N =

The ORL and Yale databases are adapted respectively to compare the performance of
SS-CBLS and traditional CNN. Each method is run independently 100 times. The results
of the two experiments on the Yale database are shown in table 2.

Table 3. The comparison of experimental results on Yale

model Test Precision (%) Test Precision Training Time (s)
Variance (%)
CNN 86.67 7.78 427
SS-CBLS 93.33 1.10 0.42

From table 3, we can see that the average test accuracy, test variance and average
training time of SS-CBLS are better than the traditional CNN. SS-CBLS has a good
accuracy and efficiency for Yale database, and can achieve better semi-supervised
classification of Yale data.

We select one photo in each group as the test data in the Yale database, and the rest
is the training data; 2 photos for test data, the rest for training data, and so on, until each
group selected 10 for the test, the rest for training. 1000 times per test, average the
accuracy. In figure 6, the horizontal axis represents the number of convolution kernels,
and the vertical axis represents the corresponding accuracy. It can be observed that the
accuracy of SS-CBLS is generally higher than that of the corresponding traditional CNN
in Yale database. And as the change of training samples and convolution kernels in each
group, the accuracy of traditional CNN is more affected than it of SS-CBLS.
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Figure 6. Accuracy between SS-CBLS and CNN on Yale

The experimental results show that SS-CBLS can more effectively extract data
features from different data, so as to ensure the accuracy of the test and reduce the
training time of SS-CBLS. It also shows that SS-CBLS has high stability and strong
adaptability. Compared with the traditional CNN, SS-CBLS has a simple structure and
only performs convolution, pooling and Softmax operations in the enhanced nodes. In
addition, SS-CBLS not only retains the features of the convolutional image, but also
retains the features of the original image at the feature nodes, while CNN only extracts
features from the convolutional image.

5. Conclusion

BLS is based on RVFLNN. It is a fast and accurate learning without deep structure. It
is obviously superior to the existing deep structure in learning accuracy and
generalization ability. In this paper, the method of nonlinear functional approximation is
adopted to prove that BLS can approximate a given function with arbitrary precision
on a given compact set. The corollary is get that BLS can also be approximated by
probability expectation on the measurable set. This inference is also a main conclusion
of [12]. Numerical experiments are also carried out on CNN-BLS on ORL and Yale
databases respectively. It is compared with traditional PCA methods. Then, a semi-
supervised BLS (SS-BLS.) based on manifold regularization framework is proposed.



D. Nan et al. / Approximation of Broad Learning System 629

We combine SS-BLS and convolution function to establish SS-CBLS, and use ORL
and Yale face database to study the problem of face classification on regular manifold.
Experimental results show that SS-CBLS can perform better classification tasks in a
simple semi-supervised environment than traditional CNNss.
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