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Abstract. Dealing with missing data is a fundamental problem in data science. In 

some rare cases, the large amount of missing data can be a big problem for any 

data analysing tasks. In this paper, we propose a method based on maximum 

likelihood estimation and expectation maximization to get estimation on the 

hidden parameter with large amount of missing data in the dataset. We perform the 

numerical experiments to validate the feasibility and stability of our method. We 

test the algorithm for different patterns of missing data, different amount of 

samples and different noise levels. The result indicates that the algorithm is 

effective in handling large amount of missing data if enough samples are provided.  

Keywords. Missing Data Imputation, Maximum Likelihood Estimation, 

Expectation Maximization. 

1. Introduction 

Missing data are frequently observed in real world problems. Sometimes, there can be 

large proportion of missing data among few intact ones. For example, in the field of 

automobile safety, there is a large quantity of data involving all kinds of accidents, but 

most of them miss part of data because of various reasons. It is crucial to retrieve the 

information from the missing data to construct a better model rather than just drop 

them. Therefore, the method of handling missing data is crucial in this situation.  

So far, there are plenty of methods dealing with missing data problems. The easy 

and common way is to drop the missing data. However, there is research indicating the 

drawback of such method.[1] Such deletion may cause substantial bias through the 

process. Therefore, many previous researches try to find an optimal way to fill the 

absent values. Such methods include simple mean imputation, hot-deck imputation. [2] 

There are also imputation methods based on statistical learning, such as K-nearest 

neighbor imputation, clustering-based imputation and regression-based imputation. 

[3][4][5] If we resort to the parameter estimation methods for imputation, expectation 

maximization is a simple end effective way to deal with missing values.[6] Multiple 

imputation (MI) is another powerful tool used by many data scientists. Unlike single 

statistical model, MI tries to utilize multiple models to get the missing data estimation 

by analyzing and combining different estimations. [7] Recently there is a growing body 

of literatures that explores the imputation methods based on neural networks and deep 
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learning. Common models including multi-layer perception, deep autoencoders and 

convolutional neural networks are used for missing data imputation. [8][9][10] Despite 

all the efforts, handling large chunk of missing data still remains a major challenge in 

data science.  

In this paper, we propose a method of handling large amount of missing data based 

on maximum likelihood estimation in order to give an accurate estimation on the 

hidden parameters. We also perform numerical experiments to test our method. This 

paper is organized as follows: Section 2 gives mathematical definitions to our problem, 

followed by the approach we take to solve the problem in Section 3. The numerical 

experiments are conducted and the results are analyzed in Section 4, and the conclusion 

is drawn in the last section. 

2. Mathematical Definition and Data Generation 

2.1. Mathematical Definition 

Suppose we have a dataset �  with N samples, where each sample containing M 

parameters. Missing values appear randomly in these samples. For each sample, we 

know the evaluation function ���; ��, where � is certain unknown parameter.  

For example, in this paper, we choose certain θ to be the true parameter and we 

define the evaluation function to be the Euclidean distance between the sample and θ, 

i.e.  

����; �� 
 ����� � ����
�

 

With N samples, we have N scores given by �� 
 ����; ��. Using the information 

given by these scores, our goal is to give an accurate estimation of the hidden 

parameter θ. 

More specifically, table 1 indicates the meaning of the symbols used in this paper. 

Figure 1 gives an illustrated description of our problem. 

Table 1.  The description of the symbols used in this paper 

Symbols Description 

� 

Dataset 

N Number of samples 

M Number of parameters of each sample 

��
 

The i-th sample in � 

��
�
 

The j-th parameter of �� 

��� The estimated value for sample x� 

���
�
 The estimated value for missing ��

� 

�� The number of missing values in �� 

	 
 �	�, 	�, … , 		� 

Hidden parameter 

	� 
 �	��, 	��, … , 	�	� 

Hidden parameter estimation 

���; 	� The evaluation function of any sample � with respect to certain parameter � 

�� 
 ����; 	� 

The evaluation score of each sample 

�
 

Number of samples with exactly m missing values 
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Figure 1. The description of the problem 

2.2. Data Generation 

The dataset �  is generated randomly, with each parameter of the sample being 

independent. In this paper, we fix the number of parameters M to be 10 in each sample. 

Hence, we get a randomly generated dataset  � 
 ��� 
 ���
� , ��

� , … , ���
� �|� 
 1,2, … , �� 

As for the missing value part, we generate them based on two different rules. 

Rule A is generating them just by randomization. For each parameter in a sample x�
�, there is a certain possibility that it is absent. The proportion of the missing values 

depends on p , the probability of a missing value occurs. We tried different p ∈�0.2,0.3,0.4,0.5� in this paper. When N equals 1000, the relation between m and N	 

are displayed in figure 2.  

 

 

Figure 2. When N=1000 and we adopt rule A for generating missing values, the relation between number of 

missing values m and corresponding number of samples N� for p ∈ �0.2,0.3,0.4,0.5  

Rule B is generating the missing values by certain rules of missing data. We 

assume the dataset contains much more ‘sparse’ samples than ‘dense’ ones. Therefore, 

we adopt the exponential relation between the number of missing values m and number 

of samples with exactly m absent values N	. We set α the parameter controlling the 

exponential relation. Here α equal to zero means the N	’s are the same for different 

m’s, and the larger the α, the larger N
, meaning more sparse samples in the dataset. 

More specifically, let 
��

����


 %� , & 
 2,3, … ,9, and we can calculate the N	’s based 
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on this relation. In this paper, we choose α ∈ {0,0.1,0.2,0.3}.  When N is equal to 1000, 

the relation between m and N� are displayed in figure 3.  

 
Figure 3. When N=1000 and we adopt rule B for generating missing values, the relation between number of 

missing values m and corresponding number of samples N
�

 for α ∈ �0,0.1,0.2,0.3� 

3. Methods 

We use the statistical tools from maximum likelihood estimation to build the basis of 

our method.  

3.1. Maximum Likelihood Estimation 

Maximum Likelihood Estimation is a method commonly used in many machine 

learning algorithms. It involves treating the problem as an optimization or search 

problem, where we seek a set of parameters that results in the best fit for the joint 

probability of the data sample. [1] 

In our problem setting, θ is a hidden parameter to be learned. The values of θ is 

closely related to those x�’s. Therefore, we can write: ���� = ��(��|�)

�

= ��(�	��|�)

�,�

. 

The second equality here comes from the assumption that these missing values are 

independent from each other. 

Now the problem becomes how to get an estimation of θ to maximize �(�). 

3.2. Expectation Maximization 

The Expectation-Maximization algorithm (EM) is an approach for maximum likelihood 

estimation in the presence of latent variables. [6] 

The EM algorithm is an iterative approach that cycle between two modes. The first 

mode attempts to estimate the missing or latent variables, called the estimation-step or 

E-step. The second mode attempts to optimize the parameters of the model to best 

explain the data, called the maximization-step or M-step.  

E-Step: Estimate the missing variables in the dataset. 

M-Step: Maximize the parameters of the model in the presence of the data.  

There are several properties that can be proved about EM algorithm. First, in the 

process of learning, the incomplete data likelihood function is non-decreasing after 

each EM step. Second, the convergence rate of the EM algorithm is quite fast with 
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respect to the likelihood function. Least but not last, the EM algorithm provides a 

condition to automatically satisfy probabilistic constraints of mixture models.[12]  

With these properties, we can safely adopt the EM algorithm in the maximum 

likelihood estimation with relatively low time cost.  

3.3. Method Towards Our Problem 

The basic idea is to utilize EM algorithm in this problem. We adopt some variant of the 

original EM algorithm to make it suitable to our problem. The details are described in 

the following algorithm.  The algorithm can be briefly viewed as in figure 4.  

Algorithm. 

1) Pre-process the missing data �(��  by simple imputation methods like mean 

imputation. Then we get an initial guess  �) of θ based on the pre-processed data.  

2) For the filled x( �，we use optimization methods to update θ), such that  

�) 
 argmin � /���(�; �)� � ����
�

, 
where w� denotes the weights of the i-th sample. Since there exists exponential 

relation between the number of missing values and the information it contained, 

we define w� 
 e	�, where m� denotes the number of missing values in x�.  

This can be viewed as the M-step in the EM algorithm, since it fits in the most 

probable estimation  θ) according to the current guess of the missing data. 

3) For the updated �), we again compute the probability distribution of �(�  for each 

missing value, to maximize the likelihood. �(� 
 argmax 3�(�4�)�, i 
 1,2, … , N 

This can be viewed as the E-step in the EM algorithm, since it gives the estimate of 

the missing value based on the current parameter estimation. 

4) Repeat step 2) and 3) until �) converges. 

 

Figure  4. Algorithm in this paper. 
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4. Numerical Experiments 

4.1. Experiments Setting 

We conduct the numerical experiments with different values of N, the data generation 

rules and noise levels. 

The implementation of Algorithm 1 in the experiments is straightforward. 

However, there are several details need to be clarified.  

In step 2) of the algorithm, the optimal value of �
  is obtained by using 

optimization method. Since the objective loss function ���
 = ∑ ������	�;�
 − ����  

is convex with respect to �
 in our setting, common convex optimization techniques are 

used to accelerate its convergence.  

In step 3), the search for the most suitable missing values �	��  is realized using 

Monte-Carlo method. We generate multiple possible values of �	��  and compute their 

probabilities. Then we choose the value with the maximum probability. The probability 

 ���	���
  is computed by counting the number of complete data points in the 

neighbourhood of �	�. Namely, 

 ���	���
 ≈
��⋂���	� , ���� , 

where ϵ is some small positive number and ���	� , �� represents the ball neighbourhood 

of �	� with radius ϵ. For the choice of ϵ, we conduct several experiments with exactly 

same settings but different ϵ. The result is shown as in figure 5.  

 
Figure 5. Error of θ with different ϵ 

The difference here is neglectable. Hence in this paper we set ϵ = 1  for all the 

computations. In our experiments, it turns out that this strategy is quite effective. 

4.2. Experiment Results 

We experiment our algorithm for different settings of N and data generation rules. Set 

the real parameter θ = �θ�, θ�, … , θ���, where θ� = � − 1, � = 1,2, … ,10. Set the initial 

value  �
 randomly, then do the optimization step from then on. Since the likelihood 

function increases for each optimization step, it is guaranteed to reach convergence of �
 after certain steps of optimization. To ensure the convergence, we set the number of 
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optimization steps to 100. In this setting, we find that all the experiments recorded do 

converge. For example, in one of the experiments, the training curve is depicted in 

figure 6. The training loss ���
 and relative error of �
 both decrease as the number of 

iteration increases. The optimization loss converges to zero after certain iterations, 

while the relative error converges to some nonzero value.  

 
Figure 6. A typical optimization curve for the algorithm 

4.3. Results Obtained From Generation Rule A 

We generate the data and missing values based on rule A we mentioned in 2.2. We do 

the numerical experiments for different settings of N and p. In each simulation, we 

record the final relative L� error after convergence of �
.  
� =

��
 − ��
�‖�‖� = �∑ ��
� − ���� ∑ ����

 

To mitigate the uncertainty caused by randomness, for each circumstance, we 

repeat the experiment for 10 times and compute the mean value of the results. The 

results are shown in Table 2.  

Table 2.  Relative L2 error for different N and p in generation rule A 

N � = �.� � = �.� � = �.� � = �.	 

100 0.033001 0.084779 0.12625 0.170639 

200 0.022362 0.042355 0.081252 0.105003 

500 0.005187 0.017401 0.033747 0.120283 

1000 0.006314 0.014972 0.031985 0.071583 

2000 0.005802 0.012728 0.022353 0.045894 

3000 0.001292 0.005141 0.017484 0.036037 

4000 0.000979 0.004929 0.013566 0.040897 

5000 0.001160 0.005343 0.012331 0.032995 

10000 0.000831 0.004699 0.010588 0.028801 
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The relation between the relative L� error and different choices of N and p are 

shown in the figure 7.  As we can see, for all cases of p, the relative error decreases as 

N grows. With larger missing value proportion p, the relative error gets larger. These 

observations agree with the intuition. Moreover, the decreasing trend of error curve 

appears linear with respect to N in the logarithmic scale.  

In addition, we can roughly infer the minimum number of samples needed in the 

dataset if we want to achieve certain accuracy of the estimation. For example, we 

choose 3% as our target error, then we can draw the graph showing how the increasing 

missing proportions affect the number of samples needed. As is shown in figure 8, the 

relation between p and N appears exponential. This is in accordance with the 

observation that the information contained in the sample is of exponential relation with 

the number of missing values. 

 
Figure 7. The trend of relative L2 error corresponding to N and p 

 
Figure 8. The rough number of samples needed to reach 3% accuracy for different p 
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4.3.1 Results Obtained From Generation Rule B 

Similarly, we generate the data and missing values based on rule B we mentioned in 

2.2. We do the numerical experiments for different settings of N and α. Each setting the 

simulation repeats 10 times to prevent uncertainty. In each simulation, we record the 

final relative L�  error after convergence of �) . The experiment results are shown in 

table 3.  

Table 3. Relative L2 error for different N and α in generation rule B 

N " 
 # " 
 #. $ " 
 #. % " 
 #. & 

100 0.170347 0.165375 0.226244 0.225555 

200 0.214389 0.099733 0.2097 0.179663 

500 0.021707 0.075418 0.066721 0.159187 

1000 0.025434 0.046212 0.05293 0.066281 

2000 0.021199 0.03759 0.050619 0.063558 

3000 0.019379 0.037268 0.046212 0.058138 

4000 0.017889 0.034286 0.043231 0.053666 

5000 0.016063 0.028757 0.038555 0.048034 

10000 0.011643 0.0167 0.028324 0.032796 

We visualize the relation between the error and N with different α’s in figure 9. It 

is obvious that the error decreases as N increases. This trend of error corresponding to 

N is similar to the results of previous experiments, which is in accordance with the 

intuition. The increase of α  will cause more missing values, hence result in the 

increasing error. For all the α, the relation between the error and N also appears linear 

in the logarithmic scale.  

Moreover, we compute the minimum number of samples needed in the dataset if 

we want to achieve an estimation of less than 3% error. As is in shown in figure 10, 

with larger α, we need exponentially larger N to compensate the missing information in 

order to obtain the same accuracy.  

 

Figure  9. The trend of relative error corresponding to N and α 
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Figure 10. the rough number of samples needed to reach 3% accuracy for different α 

4.3.2 Experiments With Noised Data 

We add different levels of noise to the s� to test the stability of our algorithm. Set the 

number of samples to be 1000, 5000 and 10000 respectively, and the noises range to be 

one of {0%, 2%, 5%}. Then we run the algorithm on both missing value generation 

rules.  

First, we test the noisy samples on generation rule A. As shown in table 4 and 

figure 11, the noise has a significant impact when less missing data are present, while 

the noise does not play an important role for the case of large amounts of missing data. 

Table 4. Experiment results of noisy data using generation rule A. 

N Noise � = �.� � = �.� � = �.� � = �.	 

1000 0 0.001071 0.007503 0.027267 0.085742 

 2% 0.007016 0.017146 0.034906 0.087117 

 5% 0.015657 0.032796 0.040249 0.087952 

5000 0 0.00116 0.005343 0.012331 0.032995 

 2% 0.004981 0.007454 0.017889 0.03656 

 5% 0.013152 0.011371 0.019444 0.040623 

10000 0 0.00083 0.004487 0.009737 0.028801 

 2% 0.00394 0.005745 0.010023 0.023973 

 5% 0.009036 0.015262 0.014419 0.024048 
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Figure 11. From left to right: relative l2 errors for the experiments with sample size equal to 1000, 5000 and 

10000 respectively. For each choice of sample size, noise level equal to 0, 2%, 5% is tested for different p. 

Then we go through the same process for the generation rule B. Table 5 and figure 

12 present the experiment results using different noise levels and α. As can be seen 

from the figure, we have similar findings compared to rule A. When the data is 

relatively complete, the increase of noise will greatly raise the error. When the data is 

sparse, the impact of the noise is not significant.  

Table 5. Experiment results of noisy data using generation rule B 

N Noise " 
 # " 
 #. $ " 
 #. % " 
 #. & 

1000 0 0.013800 0.026393 0.045067 0.087179 

 2% 0.040442 0.029586 0.045406 0.096519 

 5% 0.040895 0.044721 0.056588 0.093349 

5000 0 0.00116 0.005343 0.012331 0.032995 

 2% 0.004981 0.007454 0.017889 0.03656 

 5% 0.013152 0.011371 0.019444 0.040623 

10000 0 0.00083 0.004487 0.009737 0.028801 

 2% 0.00394 0.005745 0.010023 0.023973 

 5% 0.009036 0.015262 0.014419 0.024048

 

Figure 12. From left to right: relative l2 errors for the experiments with sample size equal to 1000, 5000 and 

10000 respectively. For each choice of sample size, noise level equal to 0, 2%, 5% is tested for different α. 
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5. Conclusion and Discussion 

This paper proposes an approach to deal with large chunk of missing data to achieve a 

relatively accurate estimation on the hidden parameters. This approach is based on the 

theory of maximum likelihood estimation and the EM algorithm. Through the 

numerical experiments of different settings of the problem, it leads to the conclusion 

that the algorithm we proposed can achieve a relatively accurate estimation of the 

hidden parameter even if more than half values are missing from the samples, as long 

as enough samples are provided. With more missing data, we need exponentially more 

samples to achieve certain accuracy. And the noise of the sample is a huge factor when 

the data is relatively complete, while it is not significant when the missing values are 

prevalent.  

Further study is needed to find the exact relations among the distribution of the 

missing values, the number of samples and the relative error of the estimation. Besides, 

since our research makes the simple assumption that all the samples and parameters are 

independent and the values are missing completed at random, it is natural to consider 

the case when the parameters have certain correlations or the data does not miss at 

random. In that case, more information can be gained from the missing data because we 

can infer the relation between the parameters using more machine learning tools.  
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