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Abstract. In this paper, we mainly discuss the Lotka-Volterra competition model 
with Robin boundary and free boundary conditions, and discuss the long time 
asymptotic behaviour of solutions in the weak-strong competition case. When 

g

   the inferior competitor p can not spread successfully as t . While 

for the superior competitor q , there are two cases: One is when *

g R

  , q  will 

die out eventually; the other is when *

g R

 , q  can spread successfully. 

However, when g

    , both p and q  have upper and lower bounds. 
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1. Introduction 

Reaction diffusion equation is a kind of typical semi-linear parabolic partial differential 

equation, it can be derived from the process of the spread of invasive species, free 

boundary area is refers to the partial differential equation is unknown, need settlement 

is given, together with free boundary reaction-diffusion equation of research is one of 

the important direction of reaction diffusion equation of the research. 

At present, Mathematicians have extensively studied competitive models with free 

boundary conditions. For example, Wang and Zhao [1,2] considered the one-

dimensional reaction-diffusion competition model with Dirichlet and Neumann 

boundary conditions, proved that the alternative nature of invasive species expansion 

and disappearance was valid under strong-weak and weak-strong conditions, and gave 

an estimate of the asymptotic expansion rate of the free boundary during species 

expansion. Guo and Wu [3] studied the strong-weak case with Neumann boundary 

conditions, and proved that there is a critical value when two species expand, which 

makes the dominant competitive species always successfully expand when their 

territory size is higher than this value. Du and Lin [4] proposed a high-dimensional 

spatial reaction-diffusion competition model with Neumann boundary conditions to 

describe the spread of invasive species, discussed the strong-weak and weak-strong 

scenarios, and gave a rough estimate of the expansion rate when expansion occurred. 
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The above studies are all aimed at Dirichlet and Neumann boundary conditions, 

while there are few researches on Robin boundary conditions, because the competition 

model with Robin boundary is more consistent with the species transmission process in 

some actual situations, which has theoretical and practical significance [5-7]. 

Therefore, we mainly research the following Lotka-Volterra model with Robin and free 

boundary: 
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2. Existence and Uniqueness of Solution 

Theorem 2.1 ( ( , ), ( , ), ( ))p t x q t x g t  is a unique global solution of the problem (1) and 

for  (0,1)   , 0T   , we have 
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additionally, we have a 0Y  , then 

           
0 ( , ), ( , ) 0 ( ) 0 ,p t x q t x Y g t Y for t      ， 
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Theorem 2.2 Suppose that , 0d n   and ( )x  satisfies [8, Theorem 2.1]. Suppose that 

0   is a nonnegative and bounded, continuous function. Set the following parabolic 

problem
 
has solution and is unique
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ˆlim ( , )
t

t xq q


    uniformly in [0, ) 0M M   .                 (3) 

Proposition 2.1 Suppose that , 0d n   and ( )x  satisfies [8, Theorem 2.1]. Hence, 

there exists 
1

K̂
n



   and any 1� , let   0v x 
�

 be the only solution , then 

( ( ) ), 0,0 ,

ˆ(0) (0), ( )

dq q x np t x

q bq q K

      


 

�
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Then we can get 

ˆlim ( ) ( )q x q x
�

  consistently in [0, ) 0M M  . 
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Proposition 2.2 Suppose that , 0d n   and ( )x  satisfies [8, Theorem 2.1]. Let 

0 1    and ( ) 0v x



  be the unique solution of 

( ( ) ), 0,0 ,

(0) (0).

dq q x nq t x

q bq

        



 

 Then 

ˆlim ( ) ( )q x q x



   consistently in [0, ) 0M M   

3. The Long Time Asymptotic Behaviour of the Solution 

According to Theorem 2.1 and Proposition 4.1 of  [8], we get this theorem. 

Theorem 3.1 The problem (1)  has  a unique solution ( , , )p q g   . When g

   , then 

     
0 ( )

limmax ( , ) 0.
x g t

t

t xp
 



                                           (4) 

This shows that if the inferior competitor can not spread successfully, it will vanish 

eventually. 

Let 0    and ( ,1)
D
d



   be the first eigenvalue of the following problem 
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D
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     for all 0c   , ( ,1) 1
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    is strict decreasing in d ,  . 

Moreover, for the fixed d  , there exists a unique *

0R    so that *( ;1) 0
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   . 

Theorem 3.2 We assume that g

   , let 
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then 
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Proof: According to Theorem 3.1, we construct the following function and where 
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So by the comparison principle we have q


 �  in g

T
D . 
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      Case 1: For the one hand, when *

g R

 . Then we have ( ,1) 0

D
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  . For 
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g h



 


   . Then the problem 
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has no non-trivial and non-negative solution, which implies lim ( , ) 0
t

t x




�  

consistently in [0, ]g


 . Therefore 
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t
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  consistently in [0, ) 0M M  .              (10) 

Since 0q  , Therefore, we get 

     lim ( , ) 0
t

q t x


  consistently in [0, ) 0M M  .                  (11) 

       Next, when *

g R

 , we can get ( ,1 ) 0

D
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  . Let ( )Q x


 be a unique 

solution of problem (9). Recall q
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T
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D
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  it is easy to see that 

( )Q x


 is the continuous function at  , one has 
0
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  consistently on [0, ]g


. As 

a result, (10) and (11) are still true. 

      Finally, we assume that (7) is false, there exist 0  and 
1
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0 ( )
i i
x g t    and 

i
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i i
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i
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1
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0
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  , such 

that
0i

x x  . According to (11) and (12) there 
0

, ( ) 0
i i

x g x g t


    . By theorem 3.1 

and choose 0   is so small that Y  . We can deduce that 
i
x g 


   for all i . 

Furthermore, by Theorem 2.1 and (12), we conclude 

| ( , ) ( , ) | | ( , ) | ( ) ,
i i ii i i x

q t x q t g q t x x g Y  
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i i i ii i i i
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where ( , )
i i
x g x


   . It follows from (11) that lim ( , ) 0

i
i

q t g 




   . We get a 

contradiction. So (7) hold. 

Case 2: For the other hand, when *

g R

 , we have ( ,1) 0

D

g






 , then 

( ,1 ) 0
D

g h



 


    for all 0  .We also have 

    
0

sup (li , ) ( )m
t

t x Q xq


   consistently on [0, ) 0M M  .           (13) 

Now we choose 0    is small such that 
*

g R

   and 

0
g g

  . Therefore, 

there exists 0T  such that ( )g t g 


   for all t T . We also can get
*

( ,1 ) ( ,1) ( ,1) 0
D

D D
g h g R

 

     
 
      . Moreover, let 0Q


   is the unique 

solution of 
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DQ h Q x g

Q QbQ g

  







      


  
 

Then lim ( , ) ( )
t

t x Q x
 



�  and inf ( ,im ) ( )l
t
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 , it is 

similar to Case 1 that we have (8) is true. 

Theorem 3.3 Supposed that ( )g     . if 0 1h k   , then the solution 
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On the principle of comparison, we get ( , ) ( , )q t x z t x , where t  is a positive constant 

and 0 ( )x g t  . Replace  0
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It is similar to step 1 that we can prove limsup ( , ) ( )
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 . 

       Step 2: As 0 1h k   , we can choose 0   such that (1 ) 1h   . For any 

given 1� , exist 0T  , then we can get ( ) , ( , )g T p t x p   � , 0 ,x t T   � . 
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Then we have ( , ) ( , )q t x q t x
�

, 0 ,x t T  � , and ( )q x
�

  increases as t  increase. 

Similarly to above,  we get limit lim ( , ) : ( )
t

q t x q x




�

�
. Moreover, there holds uniformly 

on [0, ]� , Consequently, 

  inf ( ,im ) ( )l
t

t xq q x



�

  consistently in [0, ]� .                         (15) 

When �   and 0  , and due to  Propositions 2.1 and 2.2. We have 

lim ( ) ( )qq x x




�
�

 consistently in [0, ) 0M M  . 

Therefore, we have inf ( , )m ( , )li
t

t x q xq t


   consistently in [0, ) 0M M  . 

Step 3: Since 0 1h k   , choose 
0

0   such that 0
(1 )

1
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k



 . The rest of 

proof is similar to Step 2, then we can prove inf ( , )m ( , )li
t

t x p xp t


  consistently in 

[0, ) 0M M  . 

4.  Spreading and Vanishing of Criteria 

Theorem 4.1 If 0 1h k   , g

  , then 

1
g R

  for the problem of (1). then 

0 1
g R  implies g


  . 

The proof can refer to [8, Theorem 5.1], where we omit the details. 

    Now we discuss the case 
0 1

g R  . 
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 Lemma 4.2 Suppose that 0 1h k   , if
0 1 2

min{ , }Rg R  , then there exist
0

0   , 

such that s

    provided

0
  . 

 Proof: This proof  method is analogous to  [8-10], then we left out  details. 

Define 
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where 
0

(0) (0)g   and by comparison principle we have ( ) ( )g t t . Taking 

t  , when 
0

0     , then ( ) lim ( )
t

s t


     .  

Theorem 4.2 Suppose that
0 1 2

min{ , }Rg R , there exist *

*
0   , it is related to 

0 0 0
( , , )p q g  , then g


   when 

*

  , and g

   when 

*

  . 

This proof  is analogous to [8, Theorem 5.2]. 
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