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Abstract. Minimum spanning tree (MST) has been devised for non-local cost 
aggregation to solve the stereo matching problem. However, the cost aggregation 
is employed directly from leaf toward root node, then in an inverse pass without 
considering any decision rules. And a small amount of noise is also existed in 
stereo image pairs. Both of the limitations

 

often lead to failure in achieving more 
competitive results. This paper presents a novel stereo matching algorithm using 
forward-backward diffusion and pruning-based cost aggregation. In 
“forward-backward” process, the raw image pairs are smoothened on a horizontal 
tree structure as well as retaining image edges sharp. During cost aggregation, the 
MST where a complete graph involves the whole image pixels is cut off 
self-adaptively when the depth edge information is referred to. Each node in this 
tree receives supports from all other nodes which belong to similar depth regions. 
Meanwhile, an enhanced edge similarity function between two nearest neighboring 
nodes is formulated to deal with the small-weight-accumulation problem in 
textureless regions. Consequently, the cost volume can be well aggregated. The 
proposed method is demonstrated on Middlebury v.2 & v.3 datasets and can obtain 
good performance in disparity accuracy compared with other five MST based 
stereo matching methods. 

Keywords. Stereo matching, MST, Forward-backward diffusion, Pruning-based 
aggregation, Similarity function.  

1. Introduction  

Dense stereo matching, as a traditional and challenging problem in the research of 

computer vision, has been employed in many applications such as 3D reconstruction 

[1], image refocusing [2,3], etc. Stereo algorithms can be divided into two categories, 

namely, local and global methods[4,5]. Both of them generally implement (subsets of) 

the following four steps: matching cost computation, cost aggregation, disparity 

computation, and disparity refinement.  

Global methods usually formulate the matching problem in an energy 

minimization framework consisting of a data term and a smoothness term. Dynamic 

programming (DP) [6,7], belief propagation (BP)[8] and graph cuts (GC)[9,10] are the 

classical global algorithms. Drawbacks exist if the smoothness assumption is infringed 
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or if it is improperly modeled. Compared with global methods, local methods are often 

less time-consuming. However, their computational efficiency usually comes at the 

expense of reduced matching accuracy and increased sensitivity to noise[11-15].  

Different from summing the matching cost over a fixed or adaptive cross-based 

window [14,16,17] in most cost aggregation methods, Yang [18,19] reexamined the 

cost aggregation problem and proposed a non-local solution, where the MST structure 

is built for each pixel. Mei et al. [20] proposed a segment-tree (ST) structure for 

non-local cost aggregation. Recently, a generic cross-scale cost aggregation framework 

was proposed to allow multi-scale interaction in cost aggregation [21]. Further, Yao et 

al. [22] improved the MST method by proposing a logarithmic transformation[23] on 

matching cost function and introducing depth weight into the edge weight function.  

These MST based methods mentioned above perform directly from leaf nodes 

toward root node, then from root node toward leaf nodes without any decision rules 

which would contribute to better depth boundaries. In textureless regions, the color 

differences between two neighboring pixels usually have values close to zero. Thus 

many small weight edges can accumulate along a long path, and high weights will be 

formed inevitably, leading to the small-weight-accumulation problem [23]. In addition, 

a small amount of noise is also existed in stereo images.In this paper, a novel stereo 

matching algorithm using forward-backward diffusion and pruning-based cost 

aggregation is proposed. The proposed method can be competitive in several ways. 

First, the edge weight depends on color difference, which is vulnerable to local noise. 

The forward-backward smoothing can bring a different and more robust MST structure. 

Second, the pruning-based cost aggregation incorporates the local weights and disparity 

discontinuities, allowing each node to receive supports from all other nodes belonging 

to similar depth regions. Thus more self-adaptive aggregation results and better depth 

boundaries can be expected. Moreover, the enhanced edge similarity function is 

efficient than the iteratively color-depth weight in [20,22,23], of which the essence is to 

obtain a more effective weight at the expense of computational complexity. Further, the 

enhanced edge similarity function can decrease the percentage of error pixels in 

textureless regions.  

The contributions of this paper are as follows: 1) An effective diffusion method for 

preprocessing of the raw input images; 2) An novel pruning-based method for cost 

aggregation; 3) An enhanced edge similarity function for small-weight-accumulation 

problem; 4) Quantitative evaluation with several MST based methods on Middlebury 

v.2 & v.3 datasets.  

The following section briefly review the MST based non-local aggregation method. 

Following that, the proposed method is described in detail in Section 3. In Section 4, 

the experimental results are presented. Section 5 concludes the paper. 

2. Non-Local Cost Aggregation  

For describing the proposed method in a better way, in this section the MST based 

non-local cost aggregation is reviewed briefly.  

2.1. Construction of MST structure 

First, the color image I is regard as a connected, and undirected graph G=(V, E), where 
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graph G is a simple 4-connected grid, vertices V are all the image pixels and edges E 

are all the edges derived from nearest neighboring pixels. For an edge e connecting 

neighboring pixel s and r, the corresponding weight is defined as: 

, ,

( , ) ( , ) max | ( ) ( ) |i i

i R G B

w s r w r s I s I r



          (1) 

where the maximum value measured separately from the RGB color space will be 

chosen as the edge weight.  

Second, on the basic of the edge weights and the vertices, the MST structure where 

edges with small weights are less likely to cross depth borders can be constructed by 

Kruskal algorithm.  

2.2. Cost aggregation strategy 

Inspired by Bilateral filter method, the aggregated cost on MST structure is described 

as a weighted sum of matching cost: 

( ) ( , ) ( )A

d d

q I

C p S p q C q



                   (2) 

where ( )
d

C q denotes the matching cost for pixel q at disparity d , q covers all the pixels 

in image I. ( )A

d
C p denotes the aggregated cost. S(p, q) is an edge similarity function, for 

denoting the similarity between pixel p and q. D(p, q) corresponds to the distance 

between pixel p and q, it is the sum of weight w along the path in the MST structure. 
 is a user-specified parameter used for adjusting the similarity between two pixels. 

( , )
( , ) exp( )

D p q
S p q



                       (3) 

The non-local cost aggregation can be implemented by traversing the tree structure 

in two sequential steps: 1) aggregate the matching cost from leaf nodes towards root 

node by Eqn. (4); 2) aggregate the matching cost from root node towards leaf nodes by 

Eqn. (5). Where Ch(p) and Pr(p) denote the children and parent of pixel p, respectively.  
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3. Proposed Method  

In this section, the proposed method is outlined, which includes a description of (1) 

forward-backward diffusion, (2) pruning-based cost aggregation, (3) enhanced edge 

similarity function.  

3.1. Forward-backward diffusion  

Forward-backward diffusion is a smoothing method that allows image edges to remain 

sharp as well as smoothening out noise in raw image pairs. First, a horizontal tree 

structure in which the intensities of raw images can be renewed on scanning lines is 

built for each pixel, such effective tree structure is introduced by Michael Bleyer[24] 
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for DP based stereo matching. This DP based matching method is on the basis of 

scanning line optimization[25] with 8 or 16 passes, which significantly improves the 

computational speed. Figure 1 describes the example of the horizontal tree structure 

which rooted at the pixel indicated by the solid yellow circle.  

p
 

Figure 1. Horizontal tree structure rooted on pixel p. 

Second, the forward-backward diffusion involves taking image I with RGB color 

spaces as input, and applying the diffusion equation, as Equation (6): 

( , ) ( , ) ( , ),  , ,i i i

new r

r

I u v I u v I u v i R G B                (6) 

where ( , )i
I u v is the pixel intensity at coordinate (u,v) under channel i of input image, 

( , )i

r
I u v represents the result of forward or backward diffusion:  
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where the constant  is used for maintaining the numerical stability and controlling the 

speed of diffusion, diffused images in this paper are obtained using a value of 0.2  . 

The symbol ( , )i

r
I u v is the difference between two neighboring pixels under direction 

r. (u, v-r) is the previous pixel coordinate of (u, v) along the same direction. f and b 

indicate the forward and backward direction, respectively. can be a fixed value or be 

automatically based upon an estimate of the noise. The exponential term is small when 

there is large difference between neighboring pixels, especially in texture regions. Thus 

pixels will contribute to pixels on the other side in a minimal way and the image edges 

will remain largely intact after the forward-backward diffusion.   

For linear time implementation, the diffusion can be performed in two passes: 

one pass performed from the leftmost node to the rightmost node and the forward 

results are stored in array
i

LR
F , another one performs in a reverse direction and the 

results are stored in array
i

RL
B , hence the forward-backward diffusion can be computed 

by: 

I I ,  , ,
i i i i

new LR RL
F B i R G B                    (9) 

The advantage of the forward-backward smoothness is that real image edges 

are preserved while background noise is restrained. By updating the intensity values 

with the forward-backward diffusion, the surface texture regions can be smoothened 
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and the accuracy of disparity can be improved accordingly. 

3.2. Pruning-based cost aggregation 

The original MST algorithm only takes two-pass cost aggregation on a tree structure 

directly. However, the depth boundaries would be blurred on account of lacking 3D 

cues at depth discontinuities. Accordingly, the pruning-based decision rule incorporates 

the local weights and disparity discontinuities, and each node can receive supports from 

all other nodes belonging to similar depth regions. Therefore, more self-adaptive 

aggregation results and better depth boundaries can be expected. The following two 

claims for the pruning-based cost aggregation are defined as:   

Claim 1. Let
r

T denote a sub-tree with root node r of which the parent node is s. 

There are two cases need to be considered. In one case, when node r is a pixel in 

disparity discontinuities, the connection between node s and r is cut off and node s 

will not receive any supports from
r

T . The latter alternative is that the supports 

aggregated from
r

T to s is the sum value of : 1) the aggregation supports from node 

r to s. 2) S(s, r) times the supports from r’s sub-trees to r.  

According to Claim 1, the matching cost is aggregated the first time from leaf 

nodes to root node as shown in figure 2(a) where p4 indicated by solid gray circle 

is the root node, and p5 is the leaf node which does not locate at disparity 

discontinuities. p3 indicated by solid yellow circle is the leaf node at disparity 

discontinuities, where the pruning is needed to be performed. Since p5 does not 

locate at disparity discontinuities, the cost aggregation is directly obtained from Eqn. 

(4). Instead, the link between node s and r will be cut off and the aggregated cost at 

node p3 will no longer contribute to node p4, thus the aggregated cost value ( 4)A

d
C p



actually contains supports except from node p3 and its sub-tree. As disparity 

discontinuities are more likely to occur at image edges, in this paper the disparity 

(a) from leaf to root                                         (b) from root to leaf 

Figure 2. Two pruning-based cost aggregation steps. 

Let A

d
C

 denote the aggregated cost volume and Ch(p) denote the children of node p, 

then at each node p,   

discontinuities are described by image edges obtained using Canny operation [26].  
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Claim 2. Let
r

T denote a sub-tree with root node r of which the parent node is s, and

( )A

d
C s denote all supports received by node s in the first aggregation. There are also 

two cases need to be considered. In one case, when node r locates at disparity 

discontinuities, the supports r received from nodes other than
r

T is null. Alternatively, 

the supports r received from nodes other than
r

T is ( , ) [ ( ) ( , ) ( )]A A

d d
S s r C s S s r C s


   .  

  According to Claim 2, the aggregated cost volume is then aggregated the second 

time from root node to leaf nodes as shown in figure 2(b), where p3 indicated by solid 

gray circle is the root node as well as a node locates at disparity discontinuities. Since 

in the first aggregation, p3 and its sub-tree contribute no supports to root node p4, it is 

unnecessary for p4 to provide any supports to p3 in a reverse direction. However, when 

p3 does not belong to disparity discontinuities, the supports p3 received from its 

children nodes is the same way as described in Eqn. (5). Then the aggregated cost 

volume ( )A

d
C p for any node p from its parent Pr(p) can be described as follows: 

2( ( ), ) ( ( )) (1 ( ( ), )) ( ),   
( )

( ),                                                                            

A A

d dA

d
A

d

S Pr p p C Pr p S Pr p p C p p edge
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


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 


       (11) 

  Hence, the whole pruning aggregation processes can be separated into two 

steps:1) aggregation from leaf to root node using Eqn. (10); 2) aggregation from root 

node to leaf nodes using Eqn. (11). 

3.3. Enhanced edge similarity function 

In this section, an enhanced edge similarity function between two nearest neighboring 

nodes is proposed for suppressing the impact of this problem in textureless regions.  

Based on Eqn. (3), the enhanced edge similarity function is defined as follows: 

              
( , )

( , ) ( , ) exp
e

S p q
S p q S p q

 
   

 
                   (12) 

where ( , )
e

S p q denotes the enhanced edge similarity function. In textureless regions, the 

edge similarity function ( , )S p q is close to 1, however the proposed edge similarity 

function ( , )
e

S p q can obtain a relatively small value, which significantly implies that the 

weights in textureless regions are magnified and are no longer zero. Besides, in texture 

regions where the color differences are large, the value of the exponential term in Eqn. 

(12) tends to be 1, thus color differences in these regions will not be magnified.  

  In [20,22,23], a hybrid MST structure combining the color and disparity distance 

is proposed to obtain a more effective weight, which is expressed as follows: 

     ( , ) (1 ) | ( ) ( ) | | ( ) ( ) |
H

w s r D s D r I s I r                           (13) 

where the is a parameter for balancing the relative contributions of color and disparity, 

D denotes the initial disparity map, and a value of =0.4 is assumed.  

Either using the iterative MST algorithm to redefine the MST structure by Eqn. (13) 

or using the enhanced edge similarity function, the value of the weight are optimized in 

essence. However, extra computational complexity is inevitable by using Eqn. (13) 
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because the MST structure is needed to be built at least two times. 

4. Experimental results  

Five typical nonlocal cost aggregation methods are computed with the proposed 

method: MST [18], Segment-Tree (ST-2) [20], Cross-Scale (CS-MST) [21], Weighted 

Cost Propagation with Smoothness Prior (WCPSP) [27], and Iterative Color-Depth 

(MST-CD2) [22]. All of these methods are based on MST structure. The experiments 

are carried on the Middlebury v.2 & v.3 stereo data sets[28-29].  

4.1. Evaluation on Middlebury v.2 dataset 

4.1.1 Qualitative evaluation 

Six representative images pairs (Aloe, Cloth4, Flowerpots, Lampshade1, Reindeer and 

Rocks1) are selected to show the superior performance of the proposed method visually. 

The results are shown in figure 3, where the error pixels in non-occluded regions are 

marked in red. It can be observed from the disparity maps that the proposed method 

achieves more accurate disparity maps and reliable image boundaries especially in 

low-textured regions.  

4.1.2 Quantitative evaluation 

The quantitative evaluation results of the all 31 Middlebury v.2 stereo pairs in 

non-occluded regions are shown in table 1. It can be seen that MST has the worst 

results both in the average accuracy and rank, and the performance of CS-MST is 

slightly better than MST. Compared to MST and CS-MST, the performance has been 

significantly improved in other four methods, especially the proposed method, which 

achieves a tremendous advance and ranks 1 on 19/31 image pairs. WCPSP also has 

competitive performance and ranks 2 both in average errors and ranks. The proposed 

method show better accuracy performance than WCPSP for most of the image pairs.  

The average time of MST, ST-2, CS-MST, WCPSP, MST-CD2 and the proposed 

method are shown in the last rows of table 1, respectively. It can be seen that MST is 

the most efficient method among the six methods while the proposed method is a bit 

slower than MST mainly because of the forward-backward diffusion. The overall 

runtime cost of the proposed method does not increase obviously in contrast to MST 

and is even shorter than ST-2, which ranks 3 among the six methods.  
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(a)               (b)                (c)           (d)              (e)             (f) 

Figure 3. Disparity maps on Aloe, Cloth4, Flowerpots, Lampshade1, Reindeer and Rocks1 (from top to 
bottom row) by six different stereo matching algorithms. (a) MST. (b) ST-2. (c) CS-MST. (d) WCPSP. (e) 
MST-CD2. (f) Proposed method. The error pixels in non-occluded regions are marked in red for each 
disparity map and the error threshold is 1.0 pixel. 

Table 1. Accuracy evaluation on all 31 Middlebury v.2 stereo pairs by six algorithms.  

 MST ST-2 CS-MST WCPSP MST-CD2 Proposed 

Avg.Error 10.796 9.173 10.015 8.692 9.784 8.041 

Avg.Rank 4.716 3.684 4.685 2.972 3.263 1.711 

Avg.Time(s) 0.801 1.163 4.176 3.615 2.284 0.902 

4.2. Evaluation on Middlebury v.3 dataset 

The accuracy evaluation results of the 10 representative image pairs from Middlebury 

v.3 data set in non-occluded regions are shown in table 2, where the five algorithms 

mentioned above and the proposed method are evaluated. It can be seen from table 2 

that the proposed method outperforms the MST on all of the image pairs and performs 

the best in Adirondack, ArtL, Jadeplant, Motorcycle, MotorcycleE and Pipes over other 

five methods. The average percentage of error pixels and the average rank of the 

proposed method still ranks 1 on the image pairs. It is worth noting that in table 2 the 

average errors of MST-CD2 ranks 4, but its average rank is second only to the first. 

From statistical data, it can be seen that MST-CD2 also outperforms the MST on the 

ten image pairs and the performance of this method is stable. The average time of MST, 

ST-2, CS-MST, WCPSP, MST-CD2 and the proposed method on the ten image pairs 

are shown in the last rows of table 2, respectively. MST is still the most efficient 

method among the six methods. The overall runtime of the proposed method ranks 2 

among the six methods.  
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Table 2. Accuracy evaluation on image pairs from Middlebury v.3 by six algorithms.  

Stereo Pairs MST ST-2 CS-MST WCPSP MST-CD2 Proposed 

Adirondack 12.856 11.723 12.524 10.672 12.825 9.131 

ArtL 10.013 10.224 14.806 10.875 9.992 9.501 

Jadeplant 16.913 20.074 20.785 26.526 16.432 13.361 

Motorcycle 4.143 4.434 6.486 5.235 3.872 3.721 

MotorcycleE 7.242 7.794 10.706 8.095 7.583 6.811 

Piano 20.155 20.976 17.602 17.501 19.293 19.814 
Pipes 10.174 9.733 11.655 12.696 9.612 9.231 

Playtable 35.045 33.254 19.331 31.483 33.546 30.952 
Recycle 6.945 6.603 6.966 4.551 6.442 6.704 
Vintage 38.746 32.983 34.874 25.791 36.615 29.632 

Avg.Error 16.226 15.785 15.573 15.342 15.624 13.881 

Avg.Rank 4.25 3.84 4.56 3.53 3.22 1.81 

Avg.Time(s) 2.211 3.113 10.935 11.246 5.354 2.442 

5. Conclusion 

In this paper, a stereo matching algorithm using forward-backward diffusion and 

pruning-based cost aggregation is proposed. The proposed method is developed with 

the forward-backward diffusion and the pruning-based cost aggregation as well as the 

enhanced edge similarity function. The proposed method has some advantages. First, 

the raw stereo image pairs are smoothened on a weighted horizontal tree structure with 

“forward-backward” process, it allows depth edges to remain sharp while smoothening 

out noise. Second, the pruning method is used to cut off the MST structure 

self-adaptively so that every node receives supports only from similar depth regions. 

For the sake of suppressing the impact of small-weight-accumulation problem in 

textureless regions, an enhanced edge similarity function between two nearest 

neighboring nodes is formulated. Experimental results show that the proposed method 

could achieve better matching accuracy with a minor cost of increased execution time. 

In the future, the proposed method is expecting further improvements, focusing on 

how to exact a more effective depth edge for pruning-based aggregation and how to 

reduce the complexity of the disparity refinement for high-resolution image pairs.  
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