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Abstract. Bayesian model updating provides a powerful and comprehensive 
framework for engineers to assimilate up-to-date observation data into models 

based on probability theory and significantly reduces model uncertainties. By 

integrating the concept of population Monte Carlo within the cross-entropy 
method, a novel adaptive importance sampling (AIS) algorithm is recently 

proposed to conduct robust and fast model updating using Gaussian mixture. This 

algorithm has been proved to enable constructing an importance sampling density 
(ISD) that mimics the target posterior density and is adopted in this paper to tackle 

a seismic analyses problem of 1-story moment frame with viscous damper. Results 

showcase that the distributions of parameters can be successfully updated using the 
algorithm with low computational cost. The updated results can also be further 

leveraged to guide the seismic safety assessment. 
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1. Introduction 

Model updating has always been a topic of great concern because any theoretical or 

empirical model built for a civil engineering system is subject to uncertainty--that is, it 

cannot accurately predict the system response. The purpose of model updating is to 

reduce the model uncertainty using measurements of the actual response so that the 

model can more plausibly reflect the real characteristics of the system. Model updating 

can be handled as a Bayesian updating problem where the posterior is obtained by 

combining the prior which represents the engineer’s empirical judgement and the 

likelihood which describes the observations and test data. With the maturity of sensor 

technology and the improvement of computing power, Bayesian model updating has 

been widely applied in structural identification [1], performance prediction [2], 

reliability assessment [3] and structural health monitoring [4]. 
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Consider an engineering model with n involved parameters represented by the n×1 

convex X = [X1; X2; …; Xn], the learning process of Bayesian model updating is derived 

by Bayes’ theorem, 

� � � � � �Ep c L��x x x
                                       

(1)
 

where π(x) and p(x) denote the prior and updated (posterior) joint probability density 

function (PDF) of X, respectively. They are associated through a normalized constant 

cE and the so-called likelihood function L(x) which is proportional with the probability 

of observation conditioned on X = x. Since the determination of cE involves n-

dimensional integrals, p(x) is difficult to estimate analytically in most cases and the 

posterior samples are usually generated numerically. Markov chain Monte Carlo 

(MCMC) sampling technique constitutes a series of Bayesian updating methods, such 

as adaptive Metropolis-Hastings method [5], transitional MCMC method [6] and subset 

simulation-based BUS (Bayesian updating with structural reliability methods) method 

[7]. These methods take advantage of MCMC technique that it enables generating 

samples from arbitrary distributions. The inherit limitations of MCMC, including burn-

in period, sample correlation and large coefficient of variance (COV) of estimators, 

however, are still not overcome. As a competing method, particle filter is mainly based 

on importance sampling (IS) technique and has been remarkably successful in tackling 

dynamic Bayesian updating problems. To protect from sample impoverishment of 

conventional particle filters such as sampling importance resampling filter [8], a 

rejuvenation step is added through the integration with MCMC [9]. Therefore, the 

shortcomings of MCMC have also been brought into particle filters. IS shows many 

advantages compare with MCMC, the only pity is that inappropriate choice of the ISD 

will cause significant bias of results. A novel AIS algorithm is proposed recently to 

provide a scheme of constructing the ISD resembling the posterior density using 

Gaussian mixture [10]. This method shows great potential in achieving robust and fast 

Bayesian updating. 

Based on the dynamic analyses of a 1-story moment frame subjected to the 50% 

JR Takatori record from the Kobe 1995 earthquake, the foregoing AIS algorithm is 

used to update the structural parameters using the maximum roof displacement. 

Moreover, the updated results reflect the deviation of realistic situation and people’s 

experience judgement, thus can give a guidance for the further seismic safety 

assessment. 

2. Bayesian Model Updating with Adaptive Importance Sampling Using Gaussian 
Mixture 

IS is the most fundamental variance reduction technique to improve sampling 

efficiency, which involves choosing an ISD that favors important samples. The 

construction of ISD is crucial to the success of this technique and is often the difficulty 

when using it. The optimal ISD gopt that enables the variance of IS estimator reduce to 

zero is not available practically. When Bayesian updating is integrated with IS, the 

optimal ISD is exactly the posterior density p(x). Toward the goal of constructing an 

ISD resembling p(x), the novel AIS algorithm firstly searches for the local maxima and 

constructs a Gaussian mixture located at them. The initial Gaussian mixture is 
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adaptively revised to approach p(x) based on the combination of population Monte 

Carlo and cross-entropy. The detailed algorithm is summarized as Algorithm 1 [10]. 

Algorithm 1. Bayesian model updating with AIS using Gaussian mixture. 

1. Transform the random vector X into a standard normal vector U using an 

isoprobabilistic transformation T; 

2. Search for the local maxima of φ(u)L(T-1
(u)) and construct the initial ISD using 

Gaussian mixture located at them; 

3. Generate N1 samples from the initial ISD. Estimate the covariance matrix of 

samples drawn from each component Gaussian density and calculate the 

normalized effective sample size effN . Set a prescribed threshold value thrN  and 

turn to step 8 if eff thrN N� , otherwise turn to step 4; 

4. Select out the population of important samples. Construct the ISD using Gaussian 

mixture located at the local maxima and these important samples with an enlarged 

version of the corresponding estimated covariance matrix. 

5. Generate N1 samples from the ISD in step 4 and calculate effN . Turn to step 8 if 

eff thrN N� , otherwise turn to step 6; 

6. Update the parameters (i.e., mean vectors, covariance matrixes and relative 

weights) of the Gaussian mixture based on cross-entropy method and then a new 

ISD is formed; 

7. Generate N1 samples from the ISD in step 6 and calculate effN . Return to step 6 if 

eff thrN N� , otherwise continue to step 8; 

8. Take the current Gaussian mixture as the final ISD; 

9. Generate additional (N2-N1) samples from the final ISD. Transform these samples 

back to original space using T-1
 and utilize the weighted samples to approximate 

the posterior distribution. 

3. Case Study 

The algorithm described in section 2 is adopted to update the parameters of a 1-story 

structure modeled as a moment frame based on the results of dynamic analyses. The 

frame model was posted by Sarven Akcelyan and Prof. Dimitrios G. Lignos [11]. As 

shown in figure 1, one viscous damper is installed in the single-story moment frame 

with 5m bay width and 3m story height. The beam is considered to be rigid and its 

weight is a deterministic constant 1000kN. Based on Opensees, columns and the beam 

are modeled with elastic beam-column elements, and the damping link is modeled with 

a twoNodeLink element. Moreover, the ViscousDamper material is used to model the 

viscous damper. The units of the Opensees model are mm, kN and seconds. Three 

parameters Kd, Cd and ad are considered as random variables, where Kd denotes the 

axial stiffness, Cd the damping coefficient and ad the exponent. They are mutually 

independent a prior and the prior distribution of X = [Kd; Cd; ad] is listed in table 1. 

Therefore, the isoprobabilistic transformation between X and U can be written as U = 

T(X) = {[ln(Kd)−3.2]/0.5; [ln(Cd)−3.0]/0.8; Φ
-1

[(ad−0.3)/0.1]}, where Φ is the 

cumulative distribution function (CDF) of the standard normal distribution. 
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Figure 1. Schematic representation of the 1-story moment frame with a viscous damper. 

Table 1. Prior distribution of X. 

Random variables Distribution type Distribution parameters 

Kd  Lognormal LN(3.2, 0.5) 

Cd Lognormal LN(3.0, 0.8) 

ad Uniform U(0.3,0.4) 

Suppose the structure suffers from a small earthquake and the maximum roof 

displacement is recorded by the displacement sensors. This measurement can be used 

to update the parameters of the viscous damper. Since the small earthquake does no 

damage to the structure, these parameters do not change after the earthquake and the 

updated results are available for further seismic safety assessments. In this example, the 

50% JR Takatori record is used to simulate the small earthquake and the measured 

maximum roof displacement is assumed 50mm� � 50mm� � . Assume that the prediction error 

� �� �1	 
� � 
��T u  follows a Gaussian distribution with mean 0 and standard deviation 

5, the likelihood function is thus, 
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The proportional constant in Eq. (2) is set as 1. Toward the goal of searching for 

the local maxima of posterior density, 500 samples of U are uniformly generated inside 

the three-dimensional sphere with the origin as the center and radius of 3. Samples with 

the top 20 largest values of φ(u)L(T-1
(u)) are selected out and then are clustered using a 

modified DBSCAN (Density-Based Spatial Clustering of Application with Noise). As 

indicted in figure 2(b), the 20 samples are clustered into one cluster with one sample 

distinguished as a noise. Neglecting the noise, the mass center of the cluster [-0.161; -

0.913; 0.079] is selected as the initial point of local optimization algorithm. The result 

of SQP (Sequential Quadric Programming) algorithm indicates that the local maximum 

point is very close to the initial point. Therefore, the initial ISD is constructed using a 

single Gaussian density, 
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Figure 2. Searching for the local maxima of posterior density: (a) 500 samples and samples with the top 20 

largest values of φ(u)L(T-1(u)); (b) clustering result of the 20 samples 

The initial ISD presented in Eq. (3) roughly covers the significant region of 

posterior density p(x). One adaptively revises it to form an ISD that can more 

accurately delineate the shape of p(x) by conducting steps 3-8 in Algorithm 1. The 

detailed procedure is omitted to avoid tedious descriptions. Take N1=500, N2=2000, 

thr 0.5N � . As a result, a mixture of 15 Gaussian densities is chosen as the final ISD, 

whose parameters have been updated only once based on cross-entropy method. Figure 

3 presents the details of this adaptive procedure and figure 4 presents the comparison of 

the prior and posterior marginal CDF of Kd, Cd and ad. It can be observed that the 

measurement has an impact on the distributions of all three parameters. The damping 

coefficient is the most sensitive to the observation, while the other two are less 

influenced. According to the updated results, Cd is smaller than expected, which 

indicates that the structure is more likely to undergo large roof displacement and 

requires stabilization measures to enhance its seismic safety. 

 
Figure 3. Constructing the ISD that resembling p(x): (a) 500 samples generated from the initial single 

Gaussian density ( eff 0.25N � ); (b) 500 samples generated from the initial mixture of 15 Gaussian densities 

(before using cross-entropy method, eff 0.19N � ); (c) 500 samples generated from the final of 15 Gaussian 

densities (after using once cross-entropy method, eff 0.56N � ) 
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Figure 4. Comparison of the prior and posterior marginal CDF of (a) Kd; (b) Cd; (c) ad. 

4. Conclusion 

Based on the observed maximum roof displacement of a 1-story structure subjected to 

the 50% JR Takatori record, this paper successfully achieves Bayesian updating of 

three parameters of the viscous damper using a novel AIS algorithm. Results showcase 

that the algorithm can be applied into the dynamic analyses problem and update the 

distributions of three parameters at a computational cost of about 3500 model 

evaluations. The damping coefficient Cd is the most sensitive metric affected by the 

measured maximum roof displacement and the posterior marginal CDF indicates the 

large probability that it is smaller than expected, which informs engineers to take 

measures of stabilization. 
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