
Multi-Objective Optimization of Vortex Disc 
Process Parameters Based on Neural 

Network and Genetic Algorithm 

Haoyi ZHOU, Mingming DING1, Chen SHEN, Yong HUANG and Jian LIU 

Zhejiang University of Water Resources and Electric Power, Hangzhou, Zhejiang, 
China 

Abstract. In this paper, a multi-objective optimization strategy of production 

process parameters based on the neural network and genetic algorithm is proposed 

with an automotive scroll disk as the research object. The forging forming process 
is numerically simulated by Deform-3D finite element software, with billet 

temperature, die temperature, and forming speed as optimization variables, and 

forming load, residual stress, and die deformation as optimization indicators. The 
nonlinear mapping relationship between variables and indicators is constructed by 

using the neural network, and the neural network model is optimized based on the 

genetic algorithm for dynamic optimization of parameters. The most suitable 
solutions finally obtained in the Pareto frontier set: billet temperature: 460°C, mold 

temperature: 220.006°C, forming speed: 18.4158 mm/s, when the values of the three 

optimized indicators are smaller. The solution was experimentally verified and the 
obtained vortex discs were filled to the brim with no defects, so the process 

parameters can be applied to actual production processing. 
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1.Introduction 

The process of automotive scroll disc forging production line is complex, and most of 

them still rely on workers' experience to set the production process parameters [1], but 

with the increasing market requirements for forgings, finding the optimal production 

process parameters is extremely important in the scroll disc forging production process 

[2]. 

In the process of scroll disk production and processing, setting reasonable processing 

parameters can improve product quality, reduce production costs, and reduce production 

energy consumption [3], however, the scroll disk production line process is complex, and 

if only a single objective is optimized with the degree of optimization of other objectives 

in the manufacturing process is often diminished [4], this approach is very different from 

the actual needs. Therefore, scholars at home and abroad have conducted a lot of research 

on the multi-objective optimization of process parameters. 

Liu Ganhua used genetic algorithms for multi-objective optimization of process 

parameters of MIM, which greatly improved the uniformity of volume shrinkage 

distribution and powder concentration distribution and improved the quality of MIM 
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isometric spiral bevel gears [5]. Zhihua Sha used the signal-to-noise ratio method and 

the gray correlation degree method for multi-objective optimization of extrusion cutting 

process parameters to obtain a brake disc surface with good braking performance and 

long service life [6]. Li Feiyi optimized multiple performance criteria of the inlet 

generator (IG) based on LSTM recurrent neural network by genetic algorithm, which can 

better represent the time series of realistic probability distribution for the water resources 

Recovery Facility (WRRF) design and operation to provide a better description of the 

intake water [7]. Abedzadeh Maafi Rahmat proposed a pareto design method based on 

multi-objective optimization based fuzzy full state feedback linearized controller 

(FFSFLC) for spherical wheel system, which was experimentally validated and 

compared to other algorithms, the hybrid algorithm achieved better results in a shorter 

time to obtain a better undominated solution of the Pareto frontier [8]. Wang Xiaoguang 

developed a multi-objective optimization model using genetic algorithm combined with 

neural network and designed the cross-sectional shape of the thin-walled body beam, and 

the feasibility of the method was verified after the CSS optimization of the a-pillar of the 

car frame [9]. 

In summary, a multi-objective optimization strategy of production process 

parameters based on the neural network and genetic algorithm is proposed in order to 

solve the multi-objective optimization of parameters in the production and processing of 

automotive scroll discs. Firstly, the forging and forming process is simulated by Deform-

3D software to obtain the production and processing parameter data; secondly, a neural 

network is used to fit the numerical simulation results and construct a nonlinear mapping 

relationship between variables and indicators [10]; finally, a genetic algorithm is used 

for dynamic optimization of parameters [11] to obtain the optimal solution of process 

parameters in the Pareto frontier set [12-13]. The accuracy of the numerical analysis is 

verified by comparing the numerically simulated formed parts with the actual vortex disc 

forgings obtained from the tests. 

2. Optimized solution design 

2.1 Selection of process parameters for forging production of vortex discs 

Die temperature, embryo temperature and forming speed play a crucial role in forging 

and forming results. As the raw material of the vortex disc, Al-6061, the chemical 

composition of the material is shown in Table 1 below. The material has a narrow forging 

temperature range and is prone to overburning during the forging process, so a suitable 

embryo temperature can greatly improve the forming quality. The choice of die 

temperature will affect the performance of the die, which in turn will affect the form of 

the product. The downward pressure speed of the mold will directly affect the forming 

speed of the scroll disk. Choosing the right forming speed can improve the internal 

structure and surface characteristics of the scroll disk, and also improve the stability and 

accuracy of the system. 

The forming load, residual stress and mold deformation are used as predictive 

parameters for the superiority of the forming performance of the scroll disc. 

Table 1. Chemical composition of vortex disc materials (percent) 

Materials Al2O3 Si Mg Fe Cu Mn Cr Zn Al 
6061Al 0 0.80 0.95 0.50 0.30 0.10 0.20 0.09 Residuals 
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2.2 Overall framework design of the optimization program 

The main design idea is to adopt the design process of "numerical simulation - fitting 

prediction - parameter optimization - experimental verification". Based on Deform-3D, 

we analyze the forging process and simulate it numerically. A neural network is used to 

fit the numerical simulation results of Deform-3D and build the prediction model of the 

objective function. Subsequently, the optimized index Pareto frontier set is obtained by 

genetic algorithm to obtain the optimized production process parameters. Finally, forging 

experiments are carried out according to the optimal parameters to verify the reliability 

of the optimization results. 

3. Numerical simulation of forging process based on Deform-3D 

Deform-3 The simulation of the forging and forming process is carried out by Deform-

3D finite element software to solve the problem of difficult coupling between various 

factors in the forging and forming process. Taking the vortex disc forming process as an 

example, the orthogonal test is designed to simulate the forging forming process 

numerically, and then the numerical simulation results are analysed theoretically to verify 

the rationality of numerical analysis.  

3.1 Orthogonal experimental design 

Take the auto air conditioning compressor scroll disk forming process as an example. 

Design an orthogonal test, set the billet temperature to 400°C~460°C, the mold 

temperature to 200°C~240°C and the forming speed to 5mm/s~20mm/s. As shown in 

Table 2. 

Table 2. Orthogonal experimental design 

Serial  
number 

Embryo  
Temperature 

°C 

Mold 
 temperature 

°C 

Forming speed 
mm/s 

1 400 200 5 

2 420 220 10 

3 440 240 15 

4 460  20 

In this orthogonal test, the mold temperature, forming speed and blank temperature 

are used as input parameters, and the forming load, residual stress and mold deformation 

are used as predicted parameters. The numerical simulation results are obtained after 

analyzing the vortex disc forming process by the finite element analysis software 

Deform-3D simulation using the orthogonal test parameters. The numerical simulation 

results are shown in Table 3.
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Table 3. Experimental design results 

Serial  
number 

Mold 
 temperature 

°C 

Forming 
speed 
mm/s 

Embryo  
Temperature 

°C 

Forming 
load 

N 

Residual 
stress 
MPa 

Mold 
Amount of 

deformation 
mm 

1 200 5 400 7.13 86.7 0.198 

2 200 5 420 7.03 140 0.198 
3 200 5 440 6.43 78.9 0.194 

4 200 5 460 5.69 73.9 0.155 

… … … … … … … 

45 240 2

0 

400 7.79 139 0.207 

46 240 2
0 

420 7.88 86.9 0.225 

47 240 2
0 

440 7.42 67.3 0.210 

48 240 2

0 

460 7.31 103 0.199 

3.2 Numerical simulation results 

Figure 1 shows the effect of billet temperature on the forming results of the scroll disk. 

From Figure 1 (a), it can be seen that the forming load gradually decreases as the billet 

temperature rises, which is because as the temperature increases, the fluidity of the metal 

becomes better and the deformation resistance decreases leading to a decrease in the 

forming load; in addition, the extra heat generated by friction also raises the billet 

temperature, which leads to the local overburning phenomenon, causing the grain size to 

become larger and eventually decreasing the material plasticity. Figure 1 (b) shows that 

as the billet temperature increases, the maximum residual stress in the forgings increases 

and then decreases. As the temperature of the billet increases, the temperature difference 

between the billet and the die becomes larger, forming stress concentration on the surface 

of the billet, resulting in excessive local stress on the outer surface of the billet and an 

increase in residual stress; as the temperature continues to increase, the metal flow of the 

material becomes better and the residual stress will decrease. Figure 1 (c) shows that as 

the temperature of the billet increases, the deformation of the mold first remains constant 

and then decreases, which is due to the existence of heat conduction between the billet 

and the mold, the mold temperature increases and thus the hardness decreases. 
 

 
(a)                                  (b)           
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(c) 

Figure 1. Influence of billet temperature on forming 

(a) Influence of billet temperature on forming load (b) Influence of billet temperature on maximum 

equivalent stress (c) Influence of billet temperature on mold Deform-3Dation 

Figure 2 shows the effect of mold temperature on forming results in the orthogonal 

test. Figure 2 (a) shows that the forming load decreases as the mold temperature increases 

and the rate of decrease gradually becomes larger, which is due to the slowing down of 

heat transfer due to the decrease in temperature difference, which slows down the cooling 

of the billet and improves the shaping of the billet; in addition, the temperature difference 

between the mold and the billet decreases as the mold temperature increases, which can 

relieve the stress concentration phenomenon of the billet. Figure 2 (b) shows that the 

residual stress tends to decrease as the mold temperature increases, which is due to the 

fact that increasing the mold temperature will obtain a more stable metallographic 

organization. Figure 2 (c) shows that the mold deformation tends to increase and then 

decrease as the mold temperature increases, which is due to the fact that an increase in 

mold temperature will lead to a decrease in both forming load and forming stress, but the 

mold hardness will decrease as the mold temperature continues to increase. 

 

(a)                                      (b)      

 

(c) 

Figure 2. Influence of die temperature on forming 

(a) Influence of die temperature on forming load (b) Influence of mold temperature on equivalent force (c) 

Influence of mold temperature on mold Deform-3Dation 
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Figure 3 shows the effect of forming speed on forming results in the orthogonal test. 

Figure 3 (a) shows that as the forming speed increases, the forming load increases, then 

decreases, and then increases again, which is due to the fact that as the forming speed 

increases, the work-hardening phenomenon will occur in the billet, which hinders the 

metal flow and thus the forming load increases. At the same time, as the forming speed 

increases, the contact time between the billet and the mold decreases, the uneven stress 

distribution on the surface of the billet slows down, and the forming load decreases. 

Figure 3 (b) shows that the maximum residual stress tends to increase significantly as the 

forming speed increases, which is due to the fact that when the forming speed is too large, 

part of the billet will not be deformed in time due to the presence of friction when it is in 

contact with the mold, which eventually generates stress concentration. Figure 3 (c) 

shows that with the increase of forming speed, the mold deformation rises, then falls and 

then rises again, which is due to the fact that too slow speed will lead to excessive heat 

transfer, while increasing the forming speed, the equivalent force on the mold increases, 

leading to an increase in mold deformation. 

  
(a)                              (b) 

 

(c) 

Figure 3. Influence of extrusion speed on forming 

(a) Influence of extrusion speed on forming load (b) Influence extrusion velocity on equivalent force (c) 

Influence of extrusion speed on mold Deform-3Dation 

4. Functional model building and parametric multi-objective optimization 

Compared with Deform-3D numerical simulation, neural network modeling can 

significantly improve the computational efficiency and ensure computational accuracy, 

which can be used to establish a function model through neural networks to predict the 

production results of the production line in real time. Firstly, the function model is 

established by neural network, and the calculation results of the function model are 

compared with the Deform-3D numerical simulation results to verify the accuracy of the 

neural network model. 
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In addition, a non-dominated ranking genetic algorithm (NSGA-II) combined with 

a constructed neural network model is used to dynamically find the optimal process 

parameters in the pareto frontier for multiple factors of the vortex disk machining and 

feed back to the physical entity. In addition, to verify the optimization results, Deform-

3D is used to validate the optimization results at the end of this paper. 

4.1 Neural network-based function model building 

The neuron is mainly composed of four major parts: weight, summation mechanism, 

activation function, and threshold, as shown in Figure 4. The weights are used to assign 

weights to the input signals, the summation is used to accumulate the weighted numbers, 

the activation function is used to enable the neural network to fit the nonlinear system, 

and finally the threshold is used to adjust the computational bias. 

 

Figure 4. Simple neural network model 

The neural network model is constructed in MATLAB using the results of Deform-

3D numerical simulations. The input layer of the neural network function model is the 

production process parameters, and the output layer is the target parameters. In this paper, 

the input layers are billet temperature, mold temperature, and forming speed, and the 

output layers are forming load, residual stress, and mold deformation. 

The structure of the neural network is then set. In the paper, the number of hidden 

layers of the neural network is set to 3 layers, the number of units in the first hidden layer 

is 20, the number of units in the second hidden layer is 12, the activation function is 

2/(1+e^(-2x))-1, the output layer is linear output, and the gradient descent method is used 

for fitting to obtain the function model. 

4.2 Neural network model evaluation 

As shown in Figure 5 below, the first 44 points in the algorithm as the training array, the 

last 4 points as the test array, the test array that is not involved in the neural network 

model training; after bringing the test data into the neural network model it can be seen 

that the maximum error between the results calculated using the neural network and the 

test array is not more than ten percent, so the model has some reference significance. 
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(a)                                    (b)  

 

(c) 

Figure 5. Evaluation of function model 

(a) forming load error (b) equivalent stress error (c) Mold Deform-3Dation error 

4.3 Parametric multi-objective optimization 

Traditional optimization methods generally convert multi-objective functions into 

single-objective functions, but with the development of industrial technology, the 

traditional method of converting multi-objective into single-objective can no longer meet 

the demand, so it is especially important to use intelligent multi-objective optimization 

methods. The so-called intelligent multi-objective optimization method is to solve the 

multi-objective optimization problem by multi-objective optimization method without 

reducing to the single-objective solution. The advantages of this type of method over 

traditional optimization methods are: (1) through one operation, the intelligent algorithm 

can obtain a set of solutions; (2) the search process of the intelligent algorithm for the 

optimal solution is more stochastic, i.e., the greater the probability of finding the optimal 

solution; (3) the intelligent algorithm does not have many limitations for the objective 

function, while the traditional methods have stronger limitations for the objective 

function, such as usually requiring the objective function when linearly continuous. 

The methods of multi-objective optimization are genetic algorithm, particle swarm 

algorithm, ant colony algorithm, etc. The most commonly used non-dominated sorting 

genetic algorithm is used in the paper, and the specific process is shown in Figure 6. The 

concept of Pareto optimal solution is also involved in conducting the numerical study of 

the legacy algorithm, and the appropriate effective solution is selected in the pareto 

frontier set as shown in Figure 7. 
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Figure 6. Flow chart of simple genetic algorithm 

 

Figure 7. Pareto optimal frontier 

In this paper, the number of iterations is set to 1000, and the number of populations 

is set to 1000 groups. Individuals of the parent generation and the mother generation 

provide a part of their own genes according to a certain probability, and form offspring 

after crossover, and in order to prevent falling into the local optimal solution, mutation 

is used to make the numbers at any position into random numbers within a reasonable 

range, and then the function model is brought into the genetic algorithm, and through 

calculation, non-dominated sorting is performed according to the merits of the results, 

and some individuals are eliminated and the good ones are selected to enter the next cycle. 

After the optimization is completed, the three objectives are placed on the 

coordinates for display, as shown in Figure 8 (a). Each point on the Pareto front in the 

Figure is a Pareto optimal solution, and behind each point corresponds to the relevant 

process parameters, which can be fed back to the physical entity for field selection of the 

optimal results. 
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4.4 Evaluation of genetic algorithm results 

To verify the rationality of the optimization results of the genetic algorithm, the optimal 

production process parameters shown in Figure 8 (b) are used as an example to validate 

the model. 

 

 

(a) 

 

(b) 

Figure 8. Optimization will analyze the results 

(a) Optimal solution  (b) Optimal process parameters 

The optimal process parameters after optimization were numerically simulated using 

the finite element analysis software DEFORM-3D, and the obtained results were 

compared with the optimized results of the genetic algorithm for verification. 

The numerical simulation results of the finite element analysis software DEFORM-

3D are shown in Figure 9. The maximum error is less than ten percent. Comparing the 

forming load, residual stress and mold deformation before and after the optimization, we 
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can see that the forming load is reduced from 969kN to 666kN, the residual stress is 

reduced from 101Mpa to 87.8Mpa, and the mold deformation is reduced from 0.335mm 

to 0.176mm. 

 
 (a) 

  
 (b) 

  

(c) 

Figure 9. Verification of optimization results 

(a) forming load before and after optimization 

(b) residual stress before and after optimization 

(c) Mold Deform-3Dation before and after optimization 
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4.5 Experimental verification of numerical results 

The numerical analysis results were subjected to corresponding precision die-forging 

process experiments to verify the reliability of the numerical optimization results. The 

billet was heated to 460°C using a heating furnace and extruded and formed using a 200T 

forging press. Figure 10 shows the numerical simulation of the formed part (a) and the 

physical object obtained from the forming experiment (b). It can be seen that the test 

results are in good agreement with the simulation results, and the vortex discs are all 

filled to the brim without defects such as folding, cracks and crush injuries. 

  

(a)                         (b) 

Figure 10. Verification of finite element simulation results 

(a) Scroll simulated forming parts (b) actual product precision die forgings 

5. Conclusion 

1.Deform-3D analysis shows that as the billet temperature rises, the forming load 

gradually decreases, the maximum residual stress in the forging increases and then 

decreases, and the die deformation first remains unchanged and then shows a decreasing 

trend. As the die temperature increases, the forming load decreases, the residual stress 

decreases, and the die deformation first increases and then decreases. As the extrusion 

speed increases, the maximum residual stress rises. 

2. After training, the maximum error between the prediction result of the neural 

network model and the test array does not exceed ten percent, which indicates that the 

model has certain reference significance. 

3. After the optimization of genetic algorithm, the forming load decreases from 

969kN to 666kN, the residual stress decreases from 101Mpa to 87.8Mpa, the die 

deformation decreases from 0.335mm to 0.176mm, the corresponding die temperature is 

222°C, the billet temperature is 460°C, and the forming speed is 18.4158mm/s. The 

results of forging experiments show that the vortex discs are all filled full. There are no 

defects such as folding, cracks and crush injuries. 
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