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Abstract. The design of fractional order inverse Chebyshev low pass filter has been 
presented in this paper. The (1+α) order inverse Chebyshev filters have been 
designed by comparing the transfer function of fractional order low pass notch filter 
with the second-order inverse Chebyshev low pass filter. Particle swarm 
optimization has been utilized to derive the coefficients of the fractional-order filters 
by varying α from 0.1 to 0.9. The canonical forms of these filters have been realized 
using multiple input Biquad circuits. The value of circuit elements for each order 
has been derived. Further, the values for the equivalent RC ladder network of the 
constant phase element have been derived by fifth-order continuous fractional 
expansion for the orders 1.2, 1.5 and 1.8. The magnitude plots for the 1.2 and 1.8 
order inverse Chebyshev low pass filter have been plotted in SPICE and the 
magnitude plot for the 1.8 order filter has been compared with PSO approximated 
plot to confirm the feasibility of the OP-Amp based realized circuit with a mean 
error of 0.495dB. 
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1. Introduction 

Chebyshev filters find wide application in the fields of signal processing and biomedical 

instrumentation. They are widely used for filtering signals such as ECG[1,2]. These 

filters offer higher roll-offs by allowing ripples in the passband or stopband. Depending 

on the presence of ripples in the passband or stopband, the filters are classified as type 1 

and type 2. The proposed work deals with type 2 filters, also known as inverse Chebyshev 

filters. The ripples exist in the pass-band for inverse Chebyshev filters. Due to their 

popularity, a lot of research has been done to expand the functionality of the filters in the 

fractional domain as well. Various works have presented and proposed the methods for 

designing fractional-order Chebyshev filters of both type 1 and type 2 using various 

approximation techniques[3–6]. Fractional-order circuits are derived through fractional 

calculus which is concerned with the derivative and integration of fractional orders. 

Expansion in the fractional domain offers huge advantages of exploiting the dynamic 

 
1  Corresponding Author, Electronics and Communication Engineering Division, Netaji Subhas 

University of Technology, New Delhi,110078; E-mail: ritu.ec19@nsut.ac.in 
2  Corresponding Author, Electronics and Communication Engineering Division, Netaji Subhas 

University of Technology, New Delhi,110078; E-mail: kbhawnagarg@yahoo.co.in 

Advanced Production and Industrial Engineering
R.M. Singari and P.K. Kankar (Eds.)
© 2022 The authors and IOS Press.

This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

doi:10.3233/ATDE220748

238



ranges of attenuation and more precise control over the characteristics of the circuits. 

The dynamic and precise controlling is crucial for applications in fields such as 

biomedical. In fractional-order filters, while the integer-order counterparts offer the 

attenuations of orders -20dB/decade, the fractional-order offer the attenuations over the 

range as -20(n+α) dB/decade. The design of fractional order inverse Chebyshev filter has 

also been proposed in [7] where the least square approximation method is performed to 

find the optimum coefficients of fractional order filter. The work presented in this paper 

proposes the design of the (1+α) fractional-order inverse Chebyshev filter. The proposed 

work utilizes the metaheuristic, evolutionary, nature-inspired particle swarm 

optimization algorithm to design the filters. PSO explores the multimodal, 

multidimensional solution space efficiently to produce the optimum values of 

coefficients for the design of filters. 

The response of an inverse Chebyshev filter can be expressed as a low pass notch 

filter with the transfer function: 

 ���� =
�� + ����

�

�� +
���� + ��

�
 (1) 

here, �� is the DC gain, ��  is the notch frequency and the quality factor is given by �. 

The transfer function for a general �1 + 	� order low pass filter can be given as: 
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��
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This function is an all poles function, which will not match the notch response. Thus, 

a different form of general fractional-order low pass filter with both zeros and poles can 

be given as: 

 
��
������ = �
 ������ + 1

������ + �	�� + 1
 (3) 

The purpose of defining a transfer function with both zeros and poles is so that the 

transfer function for an inverse Chebyshev filter is defined as a notch filter with both 

poles and zeros present. The transfer function of a second-order low pass inverse 

Chebyshev filter can be given as:  

 ����� = 0.003162
�� + 1.9999

�� + 0.1123� + 0.0063
 (4) 

This filter has a minimum value of attenuation as 50dB and the value of DC gain is 

approximately 0dB. The transfer function has both the zeros and the poles unlike the 

Chebyshev filter [8]. DC gain and high frequency gain for filter given by (3) can be given 

as �
 and �
��/��. The equations (3) and (4) are compared and the error between these 

is defined as the cost function for particle swarm optimization. The value of alpha is 

varied from 0.1 to 0.9. 
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2. Simulation Results of the Proposed Work 

The transfer function of (3) is approximated with respect to (4) such that optimum values 

of coefficients are derived. These coefficients are derived such that the approximated 

responses for the ripple and passband characteristics are obtained over a frequency range 

[10�	 to 10	].  The optimization of the coefficients is done by PSO by setting the 

parameters of the algorithm as presented in Table 1.  

PSO is an evolutionary, nature-inspired, metaheuristic algorithm that is based on 

swarm behaviour [9–11] The algorithm is presented as a flow diagram in Figure 1.  The 

optimization function to search the coefficients can be given as: 

  
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2
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k

LP i i
x

i

Optimization Function H x C


 




   (5) 

α is varied from 0.1 to 0.9 and filter coefficients ��,��,�	  and �
  are derived 

corresponding to different orders. The values of these coefficients have been presented 

in Table 2. The minimum value of the coefficient is taken as 0.1 and the maximum is 

considered 200. PSO traverses over a multimodal, non-uniform, multidimensional space 

over 500 iterations and with an initial population of 50. The algorithm is run multiple 

times to find the best results. 

 

Table 1. Key parameters used for Particle Swarm Optimization for optimized results. 

     Parameter Value 

xmin, xmax 0.1,200 

Population Size 50 

Maximum Iterations 500 

Velocity Range 0.2*( xmin - xmax) 

κ 1 

��,�� 2.05 

 

 

Figure 1. Flowchart of PSO  
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Table 2. Values of filter coefficients ��,��, �� and �� obtained through PSO for orders varying from1.1 to 1.9 

Filter α 

Values of Coefficients 

a1 a2 a3 a4 

��� 0.1 0.726 200.000 0.100 0.870 
 

0.2 0.681 200.000 0.100 0.929 
 

0.3 0.644 187.114 0.100 0.918 
 

0.4 0.615 169.557 0.100 0.871 

0.5 0.593 154.887 0.100 0.826 

0.6 0.574 145.795 0.100 0.804 

0.7 0.557 147.797 0.100 0.839 

0.8 0.541 166.551 0.296 0.974 

 0.9 0.518      200.000       13.576 1.220 

 

The magnitude responses of the derived filters are plotted in MATLAB and 

compared with the second-order low pass filter. The plotted curves are presented in 

Figure 2. It is observed that the derived filters follow the decreasing trend of slope and 

thus produce the response similar to ideal fractional-order inverse Chebyshev low pass 

filters. 

 

Figure 2. Comparison of designed filters with the second-order Inverse Chebyshev LPF. 

From Figure 2 it can be observed that the curves of filters follow the decreasing 

trend in the attenuation. The value of the ripples varies with 	. All the filters follow the 

behaviour of ideal (1 + 	)  order inverse Chebyshev low pass filters with notch 

frequency varying with the 	. All the filters correspond to a DC gain of 0dB. 
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2.1. Stability Analysis 

The stability of the approximated filters can be determined by conversing the transfer 

function from the s domain to W-plane [12]. This converts the fractional order to integer-

order and further stability analysis can be performed over it. The steps involved are as 

follows: 

1. Convert the s-domain transfer function to W-plane by using � = �� and 	 =

�/
.  

2. Select the integers � and 
 for the corresponding values of the 	. 

3. Solve the resultant transfer functions for poles in the W plane. 

4. Check the minimum value of the absolute pole angles,|�
| 

5. If |�
| are less than 
�

��
 rad/s , the system is unsbale. But, if all values of |�
| 

are greater than 
�

��
 rad/s, then the system is stable. 

Using the stated procedure, after conversion to Wplane the value of poles can be 

calculated by finding the roots of the equation: 

 ������ + �	�� + 1 = 0 (6) 

The poles are calculated by solving equation (6) for α varying from0.1 to 0.9.  The 

value of m is taken as 10 and k is equal to 10α. Table 3 shows the calculated values 

of minimum absolute pole angles for each order and it can be observed that all values 

of |�
|��� are greater than π/2m=9°. This verifies that the designed filters are stable. 

 

Table 3. Minimum obtained values of absolute pole angles for stability analysis of the designed fractional 
order filters. 

Order |��|���(�������) 

1.1 32.47

1.2 15.01

1.3 27.48

1.4 12.85

1.5 23.86

1.6 11.22

1.7 21.07

1.8 10.01

1.9 18.41

2.2. Circuit Realization 

The designed filters are further realized as a circuit by utilizing Op-Amp741 based 

multiple input Biquad (MIB) circuit shown in Figure 3. C2 is assumed to be a constant 

phase element and is taken as 1F with an impedance  �� = 1/���. G is taken to be 0.5. 

The transfer function for the MIB circuit is given as: 

 
��� =
�����
������ =

������ + ���� + �	
���� + �
�� + ��  (7) 
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 (a) 

 

(b) 

Figure 3.  (a)An equivalent MIB notch filter used to realize the fractional-order inverse Chebyshev LPF. (b) 
Foster 1 Equivalent Ladder Network of C2. 

 

The values of (7) can be compared with (3) and can be represented as: 
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The values of circuit elements to realize the filters are derived by solving equation 

(8) and are presented in Table 4. For practical values circuit parameters, the magnitude 

values of the elements are scaled by a factor of 1000��� = 1000�. The central frequency 

is scaled to be 1kHz (�� = 2000�). 
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Table 4. Values of circuit elements of MIB for the design of filters of different orders varying from 1.1 to 1.9. 

Order R(Ω) 
R1(KΩ) R2(Ω) R3(KΩ) ZC1(��) ZC2(��) 

1.1 50.00 7.917 57.465 15.834 12738.854 0.159 

1.2 50.00 7.913 53.846 15.825 12738.854 0.159 

1.3 50.00 7.910 54.475 15.821 11918.059 0.159 

1.4 50.00 7.909 82.646 15.818 7471.741 0.159 

1.5 50.00 7.908 60.505 15.817 9865.414 0.159 

1.6 50.00 7.908 62.225 15.816 9286.324 0.159 

1.7 50.00 7.908 59.605 15.815 9413.837 0.159 

1.8 147.84 23.381 151.823 46.762 1213.455 0.159 

1.9 6788.02 1073.447 5563.468 2146.895 0.691 0.159 

 

Capacitor C2 is represented as an equivalent RC Foster 1 ladder network of fifth-

order continuous fraction expansion. The central frequency for the FOE is taken to be 

1KHz. This approximation of constant phase element is performed as the fractional-order 

capacitors are unavailable commercially for use [13,14].  The CFE expands the fractional 

element in terms of integer orders and is substantial for orders up to 104 around the central 

frequency, depending on the order of approximation [15,16].  Element values for Foster 

1 RC Ladder network for orders of 1.2, 1.5 and 1.8 are given in Table 5. 

 

Table 5. Values of R, C elements to realize the equivalent Foster I network using fifth-order continuous 
fractional expansion.  

Element Order 

1.2 1.5 1.8 

Ra (Ω) 398.99 90.998 13.322

Rb (Ω) 257.19 197.69 62.938 

Rc (Ω) 197.19 257.16 130.37 

Rd (Ω) 218.49 424.39 320.66 

Re (Ω) 343.55 1.055K 1.345K 

Rf (Ω) 1.096K 8.99K 73.37K 

Cb (µF) 3.943 0.857 0.296 

Cc (µF) 0.039 0.069 0.286 

Cd (µF) 0.276 0.256 0.604 

 

The equivalent circuits for 1.2 and 1.8 order inverse Chebyshev LPF using the 

corresponding parameter values mentioned in Table 4 and Table 5 have been realized in 

LTSpice. Figure 4 shows the magnitude plots for the filters. The obtained curves display 

the filter characteristics of equivalent slopes, ripples in the stop-band and passband 

similar to the ideal filters. The magnitude plot for the 1.8 order filter was further 

compared with the MATLAB PSO approximated filter in Figure 5. The graph shows the 

curves closely overlapping. This confirms the feasibility of the OP-Amp based Filter 

using MIB topology. The values of maximum and mean errors between the magnitude 

plots is observed to be 9.589dB and 0.495dB respectively.  
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Figure 4. Magnitude plots of 1.8 and 1.2 Order Inverse Chebyshev Fractional Order Low Pass Filter obtained 

using SPICE implementation of the equivalent MIB circuit. 

 

Figure 5. Comparison of MATLAB approximated 1.8 Order filter and SPICE implemented 1.8 Order Filter 

circuit using MIB. 
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3. Conclusion 

In this paper, a fractional-order low pass inverse Chebyshev filter has been designed 

using the evolutionary optimization technique, particle swarm optimization. The 

designed filters showcase high efficiency with low errors and the plots display the 

designed filters follow the characteristics of the desired fractional order Chebyshev 

filters. The coefficients of the fractional-order transfer functions have been calculated for 

orders (1+α). The canonical forms for the derived filters are designed using multiple 

input Biquad notch filter topology. The value of circuit elements is derived for the orders 

1.1 to 1.9. Capacitor C2 is taken as the fractional order element and is expanded as a 

Foster -1 equivalent RC ladder network using fifth-order continuous fraction expansion. 

The magnitude plots for orders 1.2 and 1.8 are derived and the realized filters display the 

approximated behaviour to the ideal filters. The PSO approximated and the Op-Amp 

realized filter of order 1.8 are compared as magnitude plots. The realized filter closely 

follows the approximated filter’s curve and the errors are calculated between the two 

curves as well. The maximum and mean errors are calculated to be 9.589dB and 0.495dB 

respectively. Thus, the proposed work presents a method of designing the fractional order 

inverse Chebyshev filter which is accurate in terms of magnitude response. The filter is 

also practical as the stability analysis proves and realization of the filter is feasible as 

displayed by the error calculations and magnitude plots of the 1.8 order filter’s 

mathematical form and the circuit realized form. The work transcends the design of 

inverse Chebyshev filters to the fractional domain to provide with more controllability 

over the attenuation characteristics of the filters thus, providing the dynamic range of 

working. 
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