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Abstract. The application of machine learning to high cost, low volume (HCLV) 
manufacture  is challenging due to prohibitive costs  and  low data volumes. An 
example HCLV application is linear friction welding  (LFW) of Blisks (Bladed 
Disks). LFW is a solid-state joining process, typically used in high integrity 
aerospace applications. The successful application of machine learning (ML) has 
the potential to predict quality metrics and enable timely interventions to machine 
maintenance for avoidance of machine damage or deterioration. This paper proposes 
a methodology that combines expert knowledge with machine learning to minimise 
the quantity of weld data required to generate a robust and accurate ML model. 
Expert knowledge incorporation requires methods of elicitation, capture, 
standardisation and quantification of information (it can be qualitative, experiential 
and subjective) and conversion to a quantitative, data driven and digital format for 
input into a ML algorithm. This paper will describe the methodology developed to 
enable a combined data science and engineering approach to address complex 
manufacturing problems. If successful, this methodology will be used as a standard 
framework for application to HCLV manufacture. 
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Introduction 

This paper focuses on Machine Learning (ML) processes dealing with high cost, low-
volume (HCLV) manufacture products. Linear friction welding (LFW) was selected as 
a candidate process for HCLV manufacture. An overview of the process and a product 
produced is described in Section 1.1. The successful application of ML has the potential 
to predict quality metrics and enable timely interventions to machine maintenance for 
avoidance of machine damage or deterioration. The key outcome of any data analysis is 
to be able to relate the findings directly to the physical process in order to realise tangible 
benefits from the data study (e.g. simple statistics, machine learning and neural 
networks).  
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At the outset of the research the focus was entirely on the data produced by the 
process. As the research has progressed the reality has been that both data and process 
knowledge must be utilised to achieve the best outcome – a capable model with minimal 
data. In trying to resolve the LFW machine learning challenge, for the AI domain, the 
data has a greater significance. However if one starts from manufacturing standpoint then 
the voice of the process (its performance) takes priority, tempered by the constraints of 
the availability of expensive data. The reality is that the data scientist needs to understand 
what the results of any data analysis mean in the physical world and the engineer needs 
to appreciate data science can help make sense out of complex data. Combining expert 
domain knowledge adds another level of complexity to the problem. This includes 
capture of complexities and uncertainties of the process from the experts’ experience 
which is personal, subjective and qualitative. This is why a transdisciplinary approach is 
required to combine requirements of the engineering, knowledge capture and data 
science problem. This area of shared knowledge is indicated in Figure 1 by the red shaded 
area (the intersection of the AI and manufacturing domains) which indicates minimum 
area of common knowledge required. 

 
Figure 1. Knowledge interaction 

 

1. Background and problem definition 

1.1. LFW Defined 

Linear friction welding is a high integrity solid state method of bonding two components 
together as illustrated in Figure 2: 

 
Figure 2. Linear Friction Welding Process                    
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Linear friction welding applications in the aerospace industry are typically low 
volume and high cost. A typical example is the bladed disc (Blisk) shown in Figure 3. 

 
Figure 3. Rolls Royce Blisk 

Because of non-destructive evaluation limitations, control of inputs and measurement of 
outputs are key to the validation of quality for high integrity applications of this type. 
There are up to 240 data channels on the most up to date machines. To validate the quality 
of an analysis, the signals that are a measure of KPV’s (Key Process Variables), is 
undertaken. This analysis can be undertaken using standard numerical tools, however, 
these have limitations for the analysis of complex multivariate interactions that other 
methods, such as machine learning, can accommodate. 

Due to the high cost and long lead time to manufacture LFW products, a faster and 
more in-depth analytical methodology was developed. Specifically, the LFW of Blisks 
is, globally, a niche market and there has been relatively little published research on the 
in-process quality validation utilising machine learning techniques.  

1.2. Problem Definition 

As the cost of LFW products is very high, the lead time long and the quality paramount 
it is imperative to have a right first time approach to product (weld) quality. 

The analysis of output data from the process is one method of qualifying the integrity 
of the weld which necessitates  accurate, capable and repeatable analysis processes. The 
capabilities required of the model are to assure quality as both predictive and preventative 
maintenance to reduce the probability of unforeseen events resulting in non-
conformance. 

Because of the high number of signals (between 30 to 240) machine learning, 
Support Vector Machines (SVM) in particular, was chosen as a candidate process 
because of its successful application in manufacturing [1]. One of the key requirements 
for a successful machine learning model is a sufficient quantity of data. In the Blisk 
manufacturing process production data is both expensive, due to the cost of parts, and 
time consuming to generate (lead time and production rate). If production standard data 
is required for modelling it could be expensive to obtain due to an initial increase in 
inventory (especially for a new product) or production standard test pieces may need to 
be designed and manufactured. 

Experimental results have indicated that in excess of 80 welds are needed to create 
a capable model (R2 >= 0.8). This is based upon a simple planar component on a small 
experimental machine (PDS – Process Development System). It is likely, because of 
higher complexity (240 signals), that a production machine may need more data to 
produce a model of similar accuracy. 
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The key question posed is “how can the initial volume of data from welds that is 
required to produce a capable model be minimised without detriment to the 
model?” This paper aims to develop a methodology for incorporating expert domain 
knowledge in a Machine Learning pipeline to minimise the volume of expensive data 
required to generate a capable model.  
 

2. State of the Art 

An Italian research team [2] has undertaken research into the application of machine 
learning to LFW (using Artificial Neural Networks) in conjunction with numerical 
modelling. However the results indicated quality as one of three states: Instability – 
interface liquation, Safe zone – good weld and Insufficient heat – no bond. Whilst the 
capability of the model, in terms of claimed accuracy of quality prediction, is very good 
(~95%) the three classes do not reflect the granularity of classification in an aerospace 
production environment. Much work has been done for friction stir welding (FSW)[3], 
however the process mechanism is quite different. With FSW the friction force is applied 
progressively by the tool’s rotational speed, traverse speed and force. In comparison, the 
LFW friction is applied to the whole bond surface at once. This results in a very different 
analytical approach and is therefore not directly relevant for application to LFW. 

There are numerous papers on incorporation of domain expert knowledge into 
machine learning algorithms. These range from medical applications (breast cancer 
malignancy probability)[4] to incorporation in smart manufacturing [5]. There is no 
evidence of this having been applied to LFW in the literature and the challenges include 
the complexity of the process and its interactions, the small number of experts and their 
experience is personal, subjective and qualitative. The decision was taken to use simple 
knowledge elicitation processes that were straight forward to conduct and permit a 
comparison of the effectiveness of individual and combined methods. The proposed 
hypothesis is that the inclusion of expert domain knowledge in the ML algorithm will 
minimise the data volume required to generate a capable model. Chatthas’ incorporation  
of expert knowledge into ANN (Artificial Neural Networks) proposed a similar 
hypothesis [6].  
 

3. Methodology 

The initial experimental work supporting this research was undertaken on full-scale LFW 
machinery using 60 simple rectangular metal block welds. These were manufactured in 
2 sets of 30 welds. The measure of success was an R2> 0.8. This arbitrary value is used 
as  a comparative measure for improvements. The absolute measure is based upon the 
requirements of the product / process. 

The results obtained using SVM (Support Vector Machines) indicated that there was 
not enough data (Low R2 value <0.8). As there were no suitable extra welds available it 
was decided to use an experimental PDS (Process Development System) machine to 
produce additional data. Although the process loads and specimen sizes were much 
smaller than those of the full-scale machine, the process fundamentals and interactions 
are similar, giving validity to the choice. The PDS results were still unacceptably low 
(R2 < 0.8) with the spread of results taken into account, but were an improvement on the 
full-scale welds. In considering what to try next an obvious choice was to utilise expert 
domain knowledge in order to create an accurate model. The hypothesis was that by 
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incorporating expert knowledge input into the machine learning algorithm would reduce 
the number of expensive full-scale welds, and the data, required. The key step in tackling 
use of expert domain knowledge applied to machine learning was to plot the path of 
knowledge capture through categorisation and feature selection and ultimately to ML. 
This process is depicted in Figure 4. 

The first task was to extract the knowledge from the experts and to try and give that 
knowledge a comparable weighting across a number of experts. The target was to be able 
to complete the knowledge network as shown in Figure 5. This each expert puts a weight 
on what they believe to be an influencing factor. The output signals related to the weights 
are categorised into machine sub-systems based on modular functions (such as control, 
power supply, hydrostatic oil system, process load vector systems etc.). Each of these 
subsystems will have a quality burden which sum to a measure of the overall quality of 
the weld. The knowledge is based on experts’ understanding of the physics of machine 
and process. This conceptual framework was designed to be able to easily classify and  
utilise expert knowledge. 
 

 
Figure 4.  Knowledge Capture map 

 

 
Figure 5. Knowledge Network 
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The categorisation of knowledge was kept as simple as possible and for each 
attribute there was either rule to be applied or a directly measurable output such as a 
force, pressure or distance. This categorisation approach also had to be applied to any 
available data used for the machine learning analysis. Feature selection for the existing 
data was based on a windowing technique that was used to filter out any large changes 
in the data by comparing six key measures calculated in neighbouring windows. The six 
measures were mean, range, standard deviation, shape function, crest function and root 
mean square (RMS) (see Figure 6). If the sum the results in adjacent windows were 
within one standard deviation window values were combined and considered as equal. If 
the difference was greater than one standard deviation the data in that particular window 
was deemed as anomalous, therefore a candidate feature. 

  
Figure 6. Windowing methodology 

Different methods of knowledge elicitation were used to try to optimise the process 
for both individuals and groups of experts:  

Standard Questionnaire – the experts were explicitly asked to comment on the 
impact of each signal/sub-system on the key measure of quality. The key measure is the 
final positional accuracy between the two welded components as this was simply and 
independently verified by CMM (coordinate measuring machine) measurement. On a 
separate questionnaire they were asked about any implicit observations that could 
ultimately be used to make up a rule with which to analyse data. 

QFD overall signal interaction – the Quality Function Deployment methodology 
was modified so that comparison between all key signals recorded by the LFW was 
carried out by each expert and a weighting calculated to prioritise the importance of 
signal combinations to the positional quality measure. In this process the signals were all 
considered together. QFD [8] was developed as a total quality management (TQM) tool 
in the 1960s, used as a matrix to convert product attributes into engineering requirements. 
This has been modified for the knowledge elicitation application to capture the influence 
of process attributes on desired process outcomes and rank them in order of influence the 
purpose of defining features for a machine learning model. A similar approach is used in 
CRISP-DM (Cross Industry Standard Process for Data Mining) except expert process 
knowledge is not specifically included [9]. 

QFD pairwise interaction – this method was similar to the previous QFD except that 
the comparison was done pairwise meaning that only two signals were compared at once 
thus, theoretically, giving a closer focus on the comparison. 

Graphical Highlighting – The expert opinion on what was a feature was based upon 
a graphical representation of each of the key signals for a weld cycle and those areas the 
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expert believed to be of importance were given a positive weighting to amplify the 
impact on the windowing process. This means that features highlighted by the domain 
expert had an enhanced influence in the SVM algorithm. This method has some 
similarity to the interactive visualisation process suggested by Micallef et al [10]. 

For this research a combination of QFD Pairwise interaction and Graphical 
Highlighting was used. The former to select the most influential signals (deemed by the 
expert), and the latter to identify the regions on the signals that had the biggest impact 
on the measured output. Optimisation was carried out by adjusting the threshold values 
(Figure 6) based upon the expert graphical highlighting results. The data from the 
standard questionnaire has not been utilised as yet but will be incorporated into rules that 
bound the selected signals. When all of the expert data becomes available the impact of 
the different elicitation methods, individual and combined expert knowledge will be 
assessed for the greatest positive impact on the model development.  

The experts comprised 3 PhD metallurgists  and 2 Manufacturing Engineers. Each 
of the individuals had between 15 and 20 years of LFW experience. The knowledge 
extraction technique was focussed on those individuals with significant process 
knowledge and the questionnaires were designed to be able to compare knowledge 
between experts, and also convert that knowledge easily to a suitable machine learning 
format. The forms were defined by the author and discussed with the experts. The 
document were completed after a 2 ½ hour presentation to the experts. During the 
completion of the questionnaire any arising issues were resolved. 

4. Illustrative Example 

This methodology was used to try to optimise the machine learning modelled results for 
production welds in order to successfully and reliably predict the final position of the 
weld (to within an acceptable tolerance). 

LFT80 (Production Linear Friction Welding Machine) – the first stage of the 
experimental process was to select a set of existing welds carried out on a production 
machine. The welds had to be existing due to the cost of welding. The production 
machine had been recently acquired, installed and passed off. As a part of this process 
there were two sets of 30 full-sized production standard welds available using an 
aerospace alloy. These welds had all been produced using the same parameters and were 
measured independently by CMM. The data was visualised, analysed and modelled using 
basic statistics, regression and machine learning (SVM – Support Vector Machines). The 
conclusion to this initial analysis was that there was insufficient data to accurately predict 
the final position of the weld. 

Another untapped resource to call upon is the expert domain knowledge available 
for the process. At the time of writing the full knowledge elicitation feedback information 
was not available. However information from one expert was incorporated into the SVM 
algorithm and produce the range of the results shown in Figure 9. This was done with 
minimal tuning of the algorithm with the set of knowledge input from one expert. The 
work underway is extracting data in different ways from more than six experts which 
should have a more positive impact on the results. 

The next step was to produce data using the PDS in order to increase the data volume 
to generate an accurate model. 80 repeat weld cycles were undertaken and analysed for 
positional accuracy using the SVM algorithm. The analysis was carried out using 20, 40, 
60 and 80 data sets to see what influence the volume of data had on the accuracy of the 
model. Each of the data volumes was also analysed with the addition of expert knowledge 
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(AVERAGE K in Figure 7 – blue curve). Each of the data points in the graphs (Figures 
8 to 11) represents the average of 400 iterations of the algorithm. This comprises of four 
internal iterations within the SVM algorithm and 10 repetitions of the sequence. This 
whole sequence was repeated 10 times with the data sets randomly selected (no 
duplicates) from the total data pool (80 data sets). Table 1 below shows the data for one 
of the 10 iterations for 1 data point. The yellow box in the table is the average R2 

(training) for that run of 10 iterations in the orange box with the average R2 (testing) for 
the 10 iterations. 

Table 1 – Example of modelled data 

 

Apart from the data set of 20 welds it can be seen from the graph (Figure 8) that as 
the data volume increases the testing R2 increases. The training R2  is very high to start 
off with. As the number of data samples increases the range of the repeated R2 values 
decreases – this is represented by the orange (lower) and blue (upper) limits about the 
grey curve (testing R2) in Figures 8 and 9. 

 

 
Figure 7. Test R2 with and without Knowledge input 

          
Figure 8. Range of testing R2 with no Knowledge input    Figure 9 Range of testing including Knowledge 

input         

The graph (Figure 9) indicates that the addition of expert knowledge on the 60 welds 
trials has the biggest impact increasing the R2 from 0.79 to 0.82 this represents a 4% 
increase in R2. The t-test results in Table 3 also support this finding. Table 2 below 
contains all the data used for plotting graphs (Figures 7, 8 and 9). The data concerns only 
the testing results. 

Attribute Iteration # 1 Iteration # 2 Iteration # 3 Iteration # 4 Iteration # 5 Iteration # 6 Iteration # 7 Iteration # 8 Iteration # 9 Iteration # 10 Average Range
Average_ytr_r2 99.945 99.932 99.933 99.949 99.958 99.955 99.946 99.957 99.938 99.936 0.999 0.026
Average_ytr_mse 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Average_yts_r2 77.648 84.217 90.271 89.823 82.918 84.970 77.402 85.578 69.880 86.071 0.829 20.391
 Average_yts_mse 0.006 0.006 0.004 0.005 0.005 0.005 0.006 0.004 0.006 0.005 0.005 0.002
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Table 2. Summarised experimental results table 

 
Table 3 summarises the results of a pairwise t-test for each data volume with and 

without expert knowledge. For example the line designated 80 WELDS has no expert 
knowledge input whereas the line designated 80 WELDS KN incorporates expert 
knowledge in machine learning analysis. For pair 2 (sample size of 60) the significance 
(2 tail) is under the 0.05 alpha threshold indicating a separate mean for the two data sets 
(60 without knowledge and 60 with knowledge). 

 
Table 3. Paired T Test Results 

 
Although the R2 for testing is above 0.8 (the acceptability threshold) if the values of 

the testing R2 drop to within the bounds of the lower limit – this will reduce the value 
below 0.8 threshold. One obvious answer is to increase the data volume above 80 sets 
however for production application (at which this work is aimed) this may not always be 
feasible. There are two actions required to resolve this issue. One is to incorporate the 
results of the full knowledge elicitation activity when available. The other is to determine 
the specific value of R2 which correlates to the acceptable process limits. 

 
5. Conclusion  

The conclusion, so far, is that the machine learning model can be positively impacted by 
the inclusion of expert knowledge – albeit with initial results as yet. However this is only 
shown to be an improvement for a quantity of 60 welds (4% increase in R2). One 
conclusion, for this expert knowledge application, is that the data from 60 welds is an 
optimal number for knowledge input to improve the model results. The R2 value for 60 
welds (knowledge included) of 0.819 was the same as the value for 80 welds 0.819 which 
implies that 60 datasets analysed using expert knowledge gives equivalent results to 80 
data sets (without expert knowledge). This additional knowledge both increases the R2 

value and decreases the variability (or range) within the population of results. 
Whatever the initial perspective, the tools of data science and engineering make up 

the broad capability of problem-solving in a transdisciplinary environment. No universal 
definition for Transdisciplinary has been adopted [11]. In the broadest sense a 
transdisciplinary approach utilises all knowledge required to solve a problem. 

80 80K 60 60K 40 40K 20 20K
MAX 0.940 0.933 0.935 0.936 0.951 0.936 0.981 0.996
MIN 0.664 0.617 0.264 0.566 0.152 0.115 0.024 0.167
RANGE 0.276 0.317 0.671 0.370 0.799 0.821 0.956 0.829
UL 0.957 0.980 1.125 1.004 1.186 1.198 1.285 1.209
LL 0.681 0.663 0.454 0.634 0.387 0.377 0.328 0.380
AVERAGE 0.819 0.822 0.790 0.819 0.787 0.788 0.806 0.795
STD 0.063 0.063 0.098 0.074 0.149 0.146 0.170 0.168
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Knowledge could be from any discipline – (e.g. science, engineering, medicine and 
social sciences). A narrow range of knowledge (engineering, knowledge elicitation and 
data science) was used for this research. I have found that a transdisciplinary approach 
has helped integrate the engineering with the data science because of the greater 
understanding of the key nuances of each discipline. It helps eliminate the data scientists 
lack of knowledge of what the data is actually saying about the physical process and the 
engineers ‘you’ve got the data, what’s the answer’ approach. 

As stated the knowledge elicitation results available at the time of writing were an 
incomplete set from one expert. The data is to be rerun using the input from all the 
domain experts, both individually and collectively, and optimally tuning the algorithm. 

Further work is required to understand fully the impact of the interactions between 
the number of datasets and the expert knowledge input and to validate different 
knowledge elicitation methodology, and if necessary, make further improvements.  
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