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Abstract. The adoption and integration of e-commerce strategies into existing 

business models have allowed many companies to broaden their customer base and 

boost profits. However, the lack of a cost-efficient logistics planning model often 
results in the unsatisfactory performance of complex multi-echelon supply chain 

networks. As transportation planning and scheduling are typically managed via 

independent entities within the supply network, one key challenge is achieving 
maximum asset utilization rates considering production flow, logistics cost, and 

delivery time constraints. This study leverages digital twin capabilities to propose a 

4PL-oriented heuristics search model for omnichannel logistics planning and 
scheduling. The approach aims to enhance transportation flow and resource 

utilization while shortening waiting times within multi-echelon networks. An 

industrial case study is featured to validate its cost-effectiveness. 
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Introduction 

As turbulent post-COVID-19 events continue to disrupt global supply chains (SCs), more 

businesses rely on warehousing and fulfilment outsourcing to overcome resource 

deficiency and achieve cost savings [1]. Relying on multi-echelon networks to alleviate 

inventory deficits, the adoption of e-commerce business strategies to meet consumer 

expectations for faster delivery times and increased product varieties have resulted in 

reduced network resiliency and susceptibility to supply and demand-based disruptions. 

While third-party logistics providers (3PLs) can support last-mile delivery operations for 

noncomplex supply networks cost-effectively, larger enterprises utilizing multi-echelon 

networks require advanced digital solutions and streamlined SC processes to handle 

logistical roles. Fourth-party logistics providers (4PLs), a term coined by Accenture in 

the 1990s, allow companies to focus on developing value-adding products by providing 

holistic logistical operations ranging from order and supplier management to legal 
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compliance [2]. In addition, 4PL partners can also incorporate 3PL services to 

strategically improve resource flow via efficient logistics planning and scheduling 

approaches to minimize cost and ensure on-time deliveries [3].  

As an emerging technology in many digitalization roadmaps, SC digital twins (DT) 

can provide end-to-end (E2E) visibility across the network, simulation-based analysis 

and solution verification, and decision support mechanisms [4]. In addition to managing 

supply and production-based functional tasks such as production planning and 

scheduling, DTs can facilitate the implementation of business models [5] to boost profits 

based on the current market context. Hence, this study aims to establish a DT-enabled 

4PL system to optimize multi-mile logistical planning and scheduling operations using 

a heuristics search model. With considerations for the global parameters of the entire 

supply chain, the proposed approach can provide effective solutions designed to 

maximize resource utilization while keeping costs low and maintaining On-Time In-Full 

delivery performance. In addition, the cost-optimal pathfinding model can aid disruption 

mitigation, and its effectiveness is demonstrated in an industrial use case of a 4PL small 

and medium enterprise. Through the optimization mechanism, 4PL partners can boost 

SC resilience and improve the robustness and flexibility of existing logistical operations 

for complex networks.  

The structure of this paper is as follows. Section 2 reviews recent works involving 

4PL-based optimization and DT applications in logistics. Section 3 proposes a DT-

enabled 4PL optimization system and outlines the heuristics search model, while section 

4 demonstrates its effectiveness through an industrial case study. Lastly, section 5 

summarizes the work done and highlights future research prospects. 

1. Literature Review 

1.1. Fourth-party Logistics Optimization 

Existing studies on prevailing multi-mile logistical challenges are widely explored for 

various domains ranging from public transportation to consumer packaged goods. This 

section highlights recent advances in the techniques and applications used for 4PL-

related network planning optimizations. Building on the success of e-commerce business 

strategies in the urban context, Janjevic et al. presented a multi-echelon location-routing 

approach to support last-mile omni-channel deliveries [6], while Guo et al. designed a 

framework to support logistics transition based on the multi-level socio-technical 

transition theory [7]. Optimization-oriented studies have yielded positive findings, with 

Yin et al. proposing a two-stage nonlinear stochastic programming model to facilitate 

efficient 4PL delivery [8], and Melkonyan et al. utilizing an integrated multi-criteria 

decision aid and system dynamics simulation to support logistical network operations for 

food product distribution [9]. Meanwhile, Li et al. conducted a comparison between the 

krill herd algorithm and artificial fish swarm algorithm to improve the reliability and 

performance of 4PL networks in random disruption scenarios [10], and Wang et al. 

proposed a network design approach that maximizes the service satisfaction of both 

suppliers and customers under budget constraints [11].  

Aiming to utilize alternative transportation modes, Moshref-Javadi and Winkenbach 

reviewed UAV-based logistics systems and their associated operational planning 

problems [12], whereas Liu et al. presented a hybrid multi-objective, meta-heuristic 

algorithm to support two-echelon e-grocery distribution networks via van, robot, and 
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parcel locker resources [13]. Luigi et al. proposed a mixed-integer linear programming 

(MILP)-based network optimization approach featuring both drones and trucks to 

minimize routing costs [14]. Zhang et al. used a game-theoretical approach to highlight 

the value of 4PL financing modes [15]. Qian et al. proposed a two-stage stochastic 

winner determination model by integrating hybrid mitigation strategies to cope with 

disruptions [16]. Zhang et al. presented a multi-objective distributionally robust model 

for disaster relief with considerations for fairness, timeliness, and operational costs [17]. 

1.2. Digital twin-enabled logistics planning 

Leveraging on real-time connectivity, network simulations, and solution generation 

capabilities, SC DT-enabled systems are increasingly adopted to support stakeholders in 

generating value-adding solutions within logistics domains [18]. To enhance supply 

network visibility, Moshood et al. reviewed DT technologies facilitating development of 

logistical benchmarks, predictive diagnostics, and cyber-physical linkages [19], whereas 

Marmolejo-saucedo proposed an information-sharing tool to improve risk visibility for 

products and processes within pharmaceutical logistical networks [20].  

With emphasis on simulation aspects, Burgoas and Ivanov utilized discrete-event 

simulations to examine and improve food retail network resilience during COVID-19 

[21], while Coelho et al. proposed a simulation-based in-house logistics system for 

design and planning operations using a modular approach [22]. In a construction logistics 

context, Lee and Lee leveraged real-time data from building information modeling 

(BIM) and geographic information system (GIS) to identify potential logistical risks and 

optimize routes [23]. For computational aspects, Bai et al. proposed a genetic algorithm 

for the control system of a holistic factory production line environment inclusive of 

logistical processes and routes to increase efficiency based on lean production theory 

[24]. Pan et al. presented a production logistics system utilizing multidisciplinary design 

optimization methods such as collaborative optimization and heuristics optimization 

algorithms to improve cost and production efficiency [25]. Shen et al. designed a fuzzy 

analytic hierarchy process to identify performance indicators for SC evaluation within 

tobacco logistics [26]. Marmolejo-saucedo developed a heuristics method based on 

vehicle routing and bin-packing problems to lower operational costs and optimize 

resources [27]. By combining a systematic layout design approach with an artificial bee 

colony algorithm within a textile manufacturer context, Zhang et al. enhanced 

manufacturing flexibility, shortened production cycles, and reduced logistical costs [28].  

Nevertheless, from the literature mentioned above, existing studies on 4PL-based 

optimization techniques seldom consider the dynamic changes within inter-hubs, while 

DT-enabled logistics systems are often focused on individual production facilities and 

operated in silos. To fill this gap, a DT-enabled approach is proposed focusing on the 

dynamic properties of transportation resources to support 4PL network design and 

optimization. 

2. Methodology 

2.1. DT-enabled 4PL system for logistics planning and scheduling 

In our previous work [29], [4], a multi-echelon SC network was designed with DT as an 

effective system to realize E2E visibility, workflow management, and disruption 
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mitigation. Hence, bi-directional connectivity, simulation-based analysis, and data-

driven solution generation capabilities are considered essential components towards 

establishing a functional DT for 4PL delivery network design and optimization. Figure 

1 showcases a modular DT technology stack consisting of cyber-physical, representation, 

and computation layers to support transportation resource planning. The DT system 

adheres to the data-information-knowledge-wisdom (DIKW) hierarchy [30], serving as 

a circular data model to extract insights and value add towards process enhancement. 

 

 

Figure 1. An overview of a 4PL-DT architecture for logistical planning and scheduling. 

 

Within the multi-echelon SC network, supply entities (e.g., manufacturing and port 

facilities, customization sites) provide a continuous flow of finished goods (FG) for 

distribution, while upstream and downstream DCs manage the flow of goods and 

resources from regional to local areas before arriving at the retailers and consumers. 

Implementation of e-commerce strategies will result in FG transportation skipping the 

DC entities to arrive directly at end users. 

Starting with the cyber-physical layer, raw data is acquired from sources such as 

logistical assets, customer orders, material and resource allocation, supply orders, 

manpower availability, bill of materials (BOM), and sensor inputs. This heterogeneous 

data passes through the cloud computing gateway for storage and retrieval in the common 

database. Here, fixed data types, such as order information, are processed via the data 

classification and tabulation modules before storage. Meanwhile, continuous data inputs 

from sensors are processed via the streaming data conversion module before temporary 

storage in the data lake. Subsequently, relevant information will be filtered out for 

database storage. Next, the representation layer processes raw data into information for 

storage and retrieval. Periodical datasets such as customer orders and resource allocation 

are classified and tabulated before entering the database, while continuous datasets such 
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as sensor inputs pass through the streaming data conversion before being temporarily 

stored in the data lake. Relevant information, such as historical location, will be filtered 

for database storage. Lastly, the computational layer aims to derive valuable knowledge 

through optimization algorithms, while the simulation and transportation scheduling 

module provide stakeholders with wisdom essential for making informed decisions. 

Utilizing retrieved data from the common database, the search algorithm will provide an 

optimal transportation resource plan which is verified via the network simulation module. 

Once a feasible solution is identified, the transportation scheduling module will facilitate 

workflow planning for each transportation resource with considerations of utilization rate, 

material tracing, resource availability, sequencing, and unscheduled operations. Results 

are displayed through a front-end module with stakeholder requirements and disruption 

scenarios serving as data input for optimization and risk management. 

By ensuring real-time connectivity, inputs and dynamic changes can be processed 

immediately, while the simulation module can support scenario-based analysis, solution 

verification, and evaluation of alternative business models such as make-to-stock and 

make-to-order strategies. 

2.2. Heuristics search method for transportation scheduling 

Emphasizing the DT-driven computational aspects, a heuristics search optimization 

model is designed to derive a feasible delivery schedule. Using information pertaining 

to the network hubs (e.g., DC locations, availability), network (e.g., connections between 

hubs, delivery attributes), and packages (e.g., storage and vehicle availability), an 

overview of the algorithm is highlighted in Figure 2.  

 

Figure 2. Process flow of the heuristics search optimization model for 4PL transportation scheduling. 

 

To generate an optimal schedule, the main scheduling algorithm consists of (1) order 

sequencing, (2) shortest path algorithm, and (3) network condition constraints. The 

shortest path algorithm is time-dependent and expands on the Two-Step-Search 

methodology proposed by Yang et al. [31] to generate optimal schedules. Based on 

network and delivery configurations for maximizing delivery throughput and minimizing 

the total cost, this algorithm also factors in five constraints: (1) Delivery mode, (2) Travel 

duration, (3) Travel cost, (4) Resource capacity, and (5) Waiting time cost.  
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Based on the initial unscheduled order list, the order sequencing module considers 

delivery requirements and preferences, such as the required use of specific transportation 

resources for certain products/orders. As such, the module prevents inappropriate 

schedule sequencing as limited delivery resources might result in nonoptimal resource 

capacity consumption in some routes. To ease this time-computional expensive process, 

a preferred sorting sequence can be applied based on priority, earliest start time, latest 

arrival time, and package size. Besides a deterministic sorting rule, another approach 

would be to utilize the heuristic algorithm to find the optimal order sequencing based on 

local searches until a better solution is found. However, this approach will be 

computationally expensive for medium or large order sets (>50 orders). 

Next, the shortest path algorithm consists of two steps, with the first step involving 

the creation of an arrival-time-minimal-cost (atmc) discrete function based on a minimal 

cost to travel from the origin hub till the end hub. The second step features a procedure 

to extract the hub sequence with the earliest arrival time and at minimal cost. The output 

should include a sequence of visited hubs, arrival and waiting times, and the total travel 

cost for each order/ at each hub. The network conditions portray the dynamic network 

properties and are linked to the earlier five constraints. Here, the travel duration, travel 

cost, travel capacity, and waiting time cost are factored in when establishing the atmc 

function at each cost, while the delivery mode constraint is used to identify potential 

solutions based on the earliest arrival time at the end hub and latest arrival time (due 

date) of the delivery order. The optimal schedule output generated will be forwarded to 

each transportation resource for implementation through an iterative process between the 

shortest path algorithm and the network conditions. 

3. Case Study 

To demonstrate the effectiveness of the DT-enabled 4PL optimization approach on real-

life industrial scenarios, a multi-mile logistics network for a medium-sized 4PL 

enterprise is used as a testbed whereby the model is integrated within the logistics 

scheduler. With consideration to relevant factors, including resource capacity, departure 

time, travel duration and cost, the objective is to maximize production delivery flow at 

minimal total cost and duration. Additionally, this solution also complements the existing 

manufacturing execution system (MES) to provide real-time and uninterrupted E2E SC 

visibility (including transport modes) to improve logistical scenario planning and costing. 

3.1. Establishing the logistical network model 

Taking reference from the SC DT model in [4],  a modular approach is adopted to 

facilitate software upgrades and algorithm switches for scalability. Network information 

and optimization results are stored via a PostgreSQL common database, while APIs are 

used to access the various functional modules within a web application. Three core 

datasets representing hub, network, and package information are required for the delivery 

scheduling algorithm to function. Hub information includes the ID, address, country, and 

logistical status. Network information includes the ID, availability, capacity, hub edges, 

travel cost and time, and distance. Package information includes ID, size, earliest start 

date, latest arrival time, and priority. Functional managers have individual access to 

perform assigned roles through a React.js front-end interface. Through the platform, 
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constraints and configurations can be implemented for simulation and optimization 

functionalities, as highlighted in the architecture from Section 2. 

 

3.2. Cost-optimal pathfinding optimization 

Results from the heuristics search model are shown in Figure 3 (left), whereby every 

order is evaluated based on feasibility. The sequence of delivery packages can be 

configured prior to executing the algorithm based on stakeholder preferences (e.g., 

priority, size, earliest start date, and latest arrival time) to determine the most suitable 

approach. Visualization of data and the status of unfeasible solutions are also included 

with reasoning to aid clarity and improve end-user trust. Figure 3 (right) maps out the 

selected route via a geographic information system layout, summarizing relevant 

logistical information before stakeholder approval. 

 

  

Figure 3. Optimal delivery schedule (left), visualization of optimal route details (right). 

 

Experiments featuring small and medium-sized logistics networks (approximately 

50 – 200 locations, 500 – 10,000 delivery routes) highlighted the effectiveness of the 

pathfinding algorithm. However, more extensive networks will require extended periods 

of time to generate an outcome, posing as a limitation. In practice, packages are usually 

sequenced based on standard delivery policies such as First-In First-Out, priority, and 

due date. This cost-optimal pathfinding model can also be applied across industries 

utilizing complex networks, such as hauling, fast-moving consumer goods, food and 

beverages, catering to e-commerce, retail, and direct distributorship business models. 

4. Conclusion 

Logistics scheduling is an essential process within supply chain management, but in 

industry practice, transportation scheduling is typically handled independently within 

local network hubs, resulting in suboptimal resource utilization. To enhance the 

performance of delivery scheduling in dynamic network environments, a DT-enhanced 

heuristics search model is proposed for multi-mile omnichannel logistical planning and 

scheduling. By streamlining the many processes previously operated in silos 

systematically, this system supports bias elimination and bridges experience gaps. The 

scientific contribution of the study include (1)  a three-layered 4PL-oriented DT 

establishment, including cyber-physical, representation, and computation layers which 

interact to value-add towards logistical processes, (2) a cost-optimal pathfinding model 
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for transportation resource scheduling and optimization, (3) consolidation of industry-

approved logistical network constraints and conditions. 

Through a 4PL enterprise case study, the cost-effectiveness of this 4PL-DT system 

was validated. Furthermore, the system value adds to existing 3PL enterprises by 

expanding their scope of operations to encompass resource management with multi-

echelon networks. The transdisciplinary aspect involves supply chain logistics for 

network optimization, knowledge management for resource tracking, and decision 

support analysis for solution generation. Potential research directions include a global 

optimization scheduling mechanism to maximize delivery flow while minimizing total 

cost as an NP-hard problem. Further exploration of supervision algorithms, such as 

metaheuristics and reinforcement learning-based approaches, can overcome 5PL-related 

challenges, where a complete SC network from production to delivery has to be mapped 

and optimized. 
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