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Abstract. Collaborative systems-of-systems (CSoSs) are defined by the Systems 
Engineering Body of Knowledge as groups of constituent systems that voluntarily 

work with each other toward a common goal. As the complexity, sociotechnical 

interactions, and cooperation of real systems increases, so too does our need to 
understand how to design and manage collaboration across disciplines. An agent-

based model is developed that combines network evolution mechanisms with 

evolutionary game theory to simulate CSoSs. Collaboration efficiency (CE) is 
introduced as a metric by which collaboration may be measured and performance 

compared. Cost and strategy parameters of constituent systems are tested via CSoS 

model simulation to develop insights into best collaboration practices for CSoSs. 
Results suggest a reactive collaboration strategy or a reinforcement algorithm-based 

strategy produce the highest CE under certain conditions. Applicable to systems in 

sociotechnical enterprises, logistics, energy, infrastructure, and more, this research 
can improve the design and operation of any CSoS. 

Keywords. System-of-Systems, Collaboration, Game Theory, Network Evolution, 

Agent-Based Model 

Introduction 

Systems across industries are growing larger and more complex. When groups of 

systems work together, a system-of-systems (SoS) is created. The SoS demonstrates new 

properties that emerge from the constituent subsystems interacting with each other [1]. 

However, not all SoSs are the same. Systems engineers often classify SoSs into four 

major categories depending on characteristics of the SoS: directed, acknowledged, 

collaborative, and virtual [2]. Various SoSs seen in industry can be described by one of 

these four types [3]. Collaborative SoSs (CSoSs) are increasingly important in areas such 

as energy, logistics, business organization, and policy, as complex decisions are made 

by both humans and machines. In CSoSs, independent constituent systems that often 

span across industries and disciplines, collaborate by working togther and sharing 

resources for the success of the SoS without a centralized authority directing operations 

[4], [5]. Collaboration is an intuitive component of human-based systems and social 

research, but it is less obvious for entirely technical systems and research. Nonetheless, 
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computer and data-driven design and management is already being employed in 

engineered systems [3], [5]. A better understanding of the collaborative nature of CSoSs 

may yield insight into better engineering and operation of constituent systems. 

Thus far, research into understanding CSoSs has developed several approaches [6]-

[8]. Game theory has been used to represent collaborative behavior. Network and graph 

theory has been used to describe the structure of SoSs, illustrating relationships among 

constituents as parts of a whole [9]. Agent-based models (ABM) are often used to show 

SoS-level behavior and emergence [10]. Sill more recently, evolutionary game theory 

and network evolution have been used to show system dynamics and decision-making 

over time, which joins neatly with agent-based model simulations [11]-[13].  

However, strategies available to constituent systems to improve collaboration in a 

CSoS are not readily available, nor even a metric by which collaboration in a complex 

system can be measured. A gauge of collaboration, and by extension, CSoS effectiveness, 

is developed in this research. The metric of collaboration efficiency is introduced and 

demonstrated using an ABM of CSoSs. This metric is used as a performance indicator 

of collaboration and tests of different parameters embodied in the constituent systems of 

a CSoS are performed. Best strategies under certain conditions are indentified. Future 

work will expand on the parameters tested to suggest best collaboration practices to 

follow when entities participate in CSoSs.   

1. Background 

1.1. Collaboration by Evolutionary Games 

Game theory is a mathematical approach to describing interactions among individual 

agents. Interactions are modeled as stylized games with rules that describe a certain 

situation of interest. One class of interactions involves collaborative games (cooperative 
games in game theory terminology), where there is an option for two agents to either 

cooperate with each other or not. Exploring the nature of cooperation, Axelrod developed 

the iterated Prisoner’s Dilemma tournament which gave insight into the best strategies 

to play that game [14]. Iterating a collaborative game contributed to what is now 

evolutionary game theory, which captures changes in the choices made by each player 

in a game, known as their strategies.  

The dichotomy of collaboration or defection (not collaborating) has led to two 

primary areas of study in SoSs. The first uses custom games to validate characteristics 

that define a collaborative SoS [15], [16]. However, the use of custom games requires 

more empirical validation [17]. The second use of game theory in SoSs involves evolving 

games in concert with network theory to demonstrate how structure affects and is 

affected by collaboration. Studies in this area have identified strategies and network 

parameters that affect the evolution of the system [18], [19]. This group of research has 

typically used the Prisoner’s Dilemma game as a canonical example of the collaborative 

game. However, while the Prisoner’s Dilemma provides demonstrates why rational 

actors may not collaborate while acting in their own interest, the Stag Hunt is another 

stylized collaboration game that demonstrates a trade-off in social trust, that is, the 

rational choice to collaborate or not depends on what the other player (or players) is 

believed will do [20]. The Prisoner’s Dilemma has one Nash equilibrium when both 

players defect. The Stag Hunt has two pure strategy Nash equilibria, one where both 

players defect, and another where both players cooperate [19]. As such, the socially 
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collaborative game is considered more appropriate for studying collaborative behavior 

in a group of systems in this study. A general payoff matrix for a two-player collaborative 

game is shown in Table 1 using the standard Reward, Punishment, Sucker, Temptation 

(R, P, S, T) format [14]. The first letter in each outcome is the Player 1 choice and the 

second letter represents the Player 2 choice. The Reward payoff occurs when both 

players collaborate, the Punishment payoff occurs when both players defect, the Sucker 

payoff is received by a player that collaborates when the other defects, and the 

Temptation payoff is received by a player that defects when the other collaborates. The 

order of magnitudes for each payoff defines the type of collaborative game. The order 

for Stag Hunts is R > T ≥ P > S. 

 

Table 1. Generalized collaborative game payoff matrix in R, P, S, T format. 

  Player 2 

  Collaborate Defect 

Player 1 
Collaborate R, R S, T 

Defect T, S P, P 

 

1.2. SoS Network Structure 

CSoSs are often difficult to clearly visualize because different constituent systems must 

have relationships with many other systems and have properties that define both the 

systems themselves and the links between them. Each constituent may be different from 

the others and may follow different rules and values, all of which must be captured in a 

SoS model. Networks have been proposed as a quantitative representation of SoSs [18], 

[21]. CSoSs are suited to network representation as each constituent has some level of 

autonomy and decision-making which shapes the structure of the network [9].  

While an SoS may be defined once by a static network, behavior of the whole SoS 

may be observed in evolving networks [21]. The actions and rules of individual 

constituents are the building blocks that produce emergent properties, such as 

collaboration, at the network level. Thus, network theory can be leveraged to analyze 

and understand CSoSs.  

Limited research has considered the network-wide effects of evolving collaboration 

among individual nodes. Hierarchies and network shapes have been identified under 

certain collaborative conditions, as well as distinct groupings of constituents that tend to 

act similarly [13], [21]. However, there does not appear to be accepted metrics by which 

collaboration in networks can be measured, compared, or predicted.  

1.3. Agent-Based Modeling 

Collaborative games can represent decision-making on the constituent system level and 

networks can represent the CSoS as a whole. But these theories will fail to capture the 

emergence of collaboration over time without being evolutionary. The literature supports 

using ABM and simulation to execute the approaches described previously [10], [18]. 

ABM has its origins in social choice mechanisms with Schelling’s segregation model 

[22]. It has since been applied to a wide variety of complex behaviors in systems and 

system-like settings [17], [21]. The CSoS fits the description of an ABM as having a 
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variety of constituent systems, represented as the agents, which interact with each other 

according to rules and requirements defined at the constituent level, represented as agent 

behavior. Allowing the constituent system agents to voluntarily interact with each other 

and observing SoS-wide effects is achieved through ABM simulation. ABM can be 

computationally expensive to implement on large scales but is an appropriate method of 

quantitatively describing complex systems and emergent behaviors [23].  

2. Methodology 

Predicting collaboration in a CSoS and testing constituent system parameters depends on 

a model of an SoS that provides the required quantities of collaborations and interactions. 

The primary components of the proposed model are collaboration modeled by 

evolutionary game theory, SoS structure modeled by network theory, and prediction by 

agent-based model simulation. The model is informed by a set of defined inputs that are 

drawn from a few basic parameters of a generalized CSoS.  

1. Cost factor: value that defines the cost of an interaction. 

2. Payoff matrix: defines the stylized game played, which follows the Stag Hunt 

game in this study, but any other two-player cooperative game payoffs may be 

used.  

3. Number of time steps: sets the length of the simulation.  

With these inputs, the collaborative behavior of the SoS may be simulated and 

collaboration efficiency calculated.  

2.1. Collaboration Efficiency Metric 

For CSoSs to maximize effectiveness, collaboration among constituents is a principal 

function. While prior work has aimed to demonstrate how collaboration functions within 

an SoS, this research builds on previous theory to provide a useful metric by which SoS 

collaboration can be measured, herein named collaboration efficiency (CE). The CE 

metric attempts to represent the level of effective collaboration between constituent 

systems among all opportunities for two constituents to collaborate. When two 

constituent systems interact with each other in a CSoS, they have the opportunity to 

collaborate with each other or not. CE is defined as the number of cases when both 

constituents collaborate with each other, divided by the total number of interactions that 

occur between two constituents, as shown in Equation 1. This metric fills a need to 

provide insight into the collaborative nature of an SoS and allows comparison among 

systems and configurations to support stakeholder decision-making [3].  

 

   (1) 

While the CE is proposed as a measure of collaboration in a CSoS, its use may not 

be immediately obvious for constituent systems. By definition, CSoSs do not have a 

central authority over the whole. Each constituent system participates voluntarily 

towards a group goal. However, constituent systems must balance personal gain against 

the performance of the CSoS. Collaboration often involves a risk that the return on 
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collaboration is not worth the effort. Therefore, constituent systems must make decisions 

to collaborate or not with other constituents, often with limited knowledge of others’ 

decisions.  

2.2. Stag Hunt Game 

The games implemented in the agent interactions of this model are Stag Hunts to keep 

the focus on collaboration rather than individual gain, as suggested by the literature [13]. 

A key component of this model is the strategy employed by each constituent player in 

each game interaction. There have been many strategies proposed for playing 

collaborative games [18]. For this study, a selection of different strategy types is assessed. 

The strategies chosen for testing are listed, categorized, described, and interpreted in 

Table 2 [24], [25].  

 

Table 2. Collaboration strategy list and interpretations. 

 

 

Category Categorical 
Description 

Game Theory 
Strategy 

Interpretation Strategy Description 

Pure 

Simple, 
deterministic 

strategies defined 

by a mission. 

Always 
Collaborate Pure altruism Collaborate no matter what. 

Always Defect Pure self-

interest 
Do not collaborate (defect). 

Alternator 
Defined mix of 

altruism and 

self-interest 

Collaborate then defect 

every other turn. 

Stochastic 
Simple strategies 

informed by a 

specific probability. 

Random Random 

chance 

Randomly choose to 
collaborate with probability 

0.5. 

Reactive 

Strategies that 

attempt to balance 
collaboration and 

competition by 

taking advantage of 
opportunities when 

they appear. These 

strategies have a 
memory of one 

previous game. 

Tit for Tat Trusting 

copycat 

Collaborate, then repeat the 
opponent’s move from the 

last round. 

Suspicious Tit 
for Tat 

Distrustful 

copycat 

Defect, then repeat the 

opponent’s move from the 
last round. 

Pavlov Win stay, lose 
shift 

Collaborate first, then 

collaborate if last round 
payoff was R or T, and 

defect otherwise. 

Adaptive 

Adaptation attempts 

to lengthen the 
memory of reactive 

strategies and 

include all previous 
games. An intuition 

is built out of the 

past experience. 

Adaptor Experienced 

intuition 

Every past game played 
adjusts an internal state 

according to a simple 

function. The internal state 
defines the probability of 

collaboration. 

Learning 

A stochastic 

behavior function is 

developed based on 
feedback provided 

from past games 

using learning 
algorithms.  

Q Learner Blind 

reinforcement 

A simple, model-free 

reinforcement learning 

algorithm takes the payoffs 
of every previous game and 

attempts to choose 

collaboration or defection to 
improve payoff. 
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The scope of strategies to test was developed based on literature for the best 

performing and most descriptive strategies already researched by the evolutionary game 

theory community. Pure strategies are not necessarily descriptive of real systems but are 

useful for understanding and comparison purposes. Similarly, the Random strategy is not 

necessarily useful in life, but can represent unknown strategies from one player’s point 

of view. The Random strategy is treated as the baseline comparison for other strategies 

in this research. 

The reactive, adaptive, and learning strategies are all increasingly nuanced 

representations of actual behaviors observed in the real world or that have performed the 

best in terms of payoff in previous  research [24]. It should be noted that the vast majority 

of evolutionary game strategy research has looked at the Prisoner’s Dilemma game. The 

Stag Hunt game is used in this research as a more appropriate approximator of 

collaborative interactions [13]. However, little research exists to suggest a best strategy 

for this game type, so the available library of strategies is carried over and investigated 

herein. 

2.3. Network Representation 

A network representation of the SoS arises out of the interactions between each modeled 

constituent. Each constituent is considered to interact with each other one at a time. That 

is, a network edge links exactly two constituent nodes. An interaction in this model is 

represented by a network edge. Thus, for each constituent, multiple games may have to 

be played to account for all interactions that exist at a given point time.  

Not all constituents are necessarily always linked to each other. To capture evolution 

of the network structure, constituents will initially connect and interact with each other 

by random chance. Thereafter, interactions will be maintained for another game if and 

only if the payoff of each constituent from the first game is greater than the cost to make 

the edge. This mechanism was designed to follow the natural cost-benefit consideration 

that a rational agent voluntarily participating in the CSoS might use. New interactions 

after initialization are formed by random chance only if two constituents have not 

interacted for five consecutive time steps to allow new interactions to periodically form 

over time. In the case of a real CSoS, changes in sentiment, leadership, marketplace, 

environmental factors, and more can influence the decision to try new interactions. The 

function that defines new starting new interactions may be an area of study for future 

research.  

2.4. Model Simulation 

A variety of different tools exist for constructing and simulating ABMs, but the 

collaborative SoS model presented is developed directly in the Python programming 

language. Python is heavily used in scientific and data analysis for its high-level 

readability and extensibility. To streamline the development process, the Axelrod and 

NetworkX code libraries are used to run games in each interaction and represent the 

model as a network, respectively [25], [26]. Both libraries have been supported and 

validated with previous research. 

In each simulation run, a comma separated values file is read to memory to define 

agents, and initial parameters are defined in code, including the number of simulation 

time steps, cost factor, and whether a seed is to be used for replicable simulations. Then 

a data table of placeholders for each possible interaction between every agent is 
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initialized. A loop fills the data table by calculating whether an interaction exists for each 

combination and determines results of games played for the valid interactions during 

each time step. The interaction configuration of the network is updated each time step 

depending on whether the results of each game played were higher than the cost to play. 

When the simulation loop has processed all time steps, the number of true collaborations, 

i.e., all games where both constituent agents chose to collaborate, is counted and divided 

by the total number of valid interactions to yield the collaboration efficiency. One 

collaboration efficiency value is a result of each simulation run.  

The results presented were calculated from simulations run on a consumer desktop 

computer. Each run lasted an average of 50.38 ± 2.02 seconds running in a single-

threaded Python environment on a multicore processor at a clock speed of 4.6 GHz. 

3. Initial Results 

The test CSoS consists of five constituent systems with a basic set of parameters. The 

Stag Hunt payoff matrix used is given in Table 3. The remaining constituents were given 

the Random strategy. The baseline Random strategy is used to represent an unknown 

strategy from the point of view of the test agent. Because a CSoS has little to no central 

control, a real world constituent system would likely not have omniscience of the 

collaboration strategies of other constituents. The Random strategy represents this 

limited knowledge. 

Table 3. Stag Hunt payoff matrix. 

  Constituent 2 

  Collaborate Defect 

Constituent 1 
Collaborate 5, 5 1, 3 

Defect 3, 1 3, 3 

 

Simulating the CSoS ABM produces a few results of interest. Each run of 100 time 

steps results in one possible CSoS. The CE of each interaction is displayed so that 

constituent-level effects can be observed. The CSoS result from one test run is given in 

Fig. 2. The Pavlov test case is shown, whereby agent A follows the Pavlov strategy, and 

the remaining agents are Random. The thickness of each line corresponds to the CE value 

printed on the line. The CSoS average CE for this single test simulation is 28.1% even 

though the CE of individual interactions varies. 

 

Figure 1. Network model of five-constituent CSoS. 
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A benefit of using the Random strategy for the baseline is allowing a basic 

verification of the model simulation by testing a model with all Random strategies. The 

expected collaboration efficiency from this case is ¼, or 0.25, because there is one result 

where both constituent collaborate out of the four possible outcomes of each game. If 

two constituents have a 0.50 probability to choose to collaborate, then the chance they 

will both collaborate is (0.5)2 or 0.25. The simulation of the five Random constituents 

does produce this result, as seen in Fig. 2, where the CSoS CE is plotted over each time 

step. Six 100-step tests are overlaid to demonstrate that the simulations do converge. 

 

Figure 2. All-Random constituent systems converges to an expected CE of 0.25. 

The full test results of all collaboration strategies listed earlier are presented in Table 

4. Each strategy is also tested at a different cost value. The range of cost values tested 

was chosen to fall between the payoffs of each possible outcome of the Stag Hunt games. 

Testing was performed by varying the collaboration strategy of one constituent among 

the five, simulating the network of constituents for 100 steps, and repeating the 

simulation 50 times to observe if the CE of the CSoS appears to consistently converge 

to a specific value. All test cases converged to an average CE over time. The results are 

plotted in Fig. 3 for easier visualization. The 95% confidence limit for each test case 

based on 50 samples is shown with error bars. The 0.25 CE all-Random baseline is drawn 

over the results to show which collaboration strategies performed better and worse. 

 

Table . Collaboration efficiency test results. 

Strategy Category Test Strategy CSoS CE 95% CI 

Pure 

Always Collaborate 0.349 ± 0.0016 

Always Defect 0.150 ± 0.0014 

Alternator 0.251 ± 0.0013 

Stochastic Random 0.249 ± 0.0016 

Reactive 

Tit for Tat 0.251 ± 0.0020 

Suspicious Tit for Tat 0.247 ± 0.0017 

Pavlov 0.296 ± 0.0014 

Adaptive Adaptor 0.215 ± 0.0020 

Learning Q Learner 0.340 ± 0.0017 

4

M. Boyd et al. / Preliminary Evolutionary Network Model for Efficient Collaboration 347



 

 

Figure 3. Five-constituent CSoS collaboration strategy results compared to Random baseline at 0.25 CE.  

4. Conclusions and Future Work 

This research so far establishes a metric to measure collaboration in a CSoS and develops 

a simulation to test constituent system parameters against it. An ABM constructs a CSoS 

with a network structure and set of input parameters, simulates collaboration decisions 

among constituent systems, and reports CSoS collaboration efficiency. The simulation 

model produces networks and CEs that are expected for simple constituent 

configurations. A constituent that always chooses to collaborate produces the highest CE, 

which is an expected but trivial solution. The Pavlov and Q Learner appear to be the 

most effective, non-trivial collaboration strategies for the tested set of parameters. The 

remaining test strategies are either worse than a random baseline or are not significantly 

different from it. These results suggest a decision-making heuristic that a constituent 

system may use to improve CSoS effectiveness. If a constituent participates in a small 

CSoS with a finite number of other constituents, has competitive costs to interact with 

other constituents, and will receive better returns for collaboration than not, then the 

constituent might choose to follow the prescribed Pavlov strategy for collaboration 

decisions or develop a learning algorithim such as a Q Learner model over time to inform 

their decisions.  

However, the CSoS model presented has limitations. The cost function per 

interaction is not sophisticated and depends on a single input parameter. Competition 

among constituents is not addressed. Additional attributes may also be used to define 

environmental pressures, such as political, social, or technological, on realistic 

constituent operations and decision-making. Future work will attempt to address each of 

these shortcomings by building additional functionality into the ABM and testing a larger 

set of CSoS parameters. As with any simulation model, there remains a need to validate 

the results against real-world system dynamics. Regardless, both the collaboration 

efficiency metric presented, and collaboration strategies identified, may be useful to 

constituent systems in CSoSs and may encourage collaboration analysis in real systems 

across industry and business.  
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