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Abstract. Data exchange is a critical part of collaborative design and digital 

engineering. Design teams need effective communication to exchange vital 
information and achieve desired outcomes. Literature shows high data quality is 

matched with higher levels of trust and lower levels of perceived risk which 

influence design decisions. This paper conducts a survey of industry professionals 
as a preliminary investigation of how data exchange methods implemented in digital 

engineering affect perceived trust and risk levels of engineers. The survey adopts 

questions from the Technology Acceptance Model (TAM) and Unified Theory of 
Acceptance and Use of Technology (UTAUT2) questionnaires to measure risk and 

trust perception in digital engineering environments for three data exchange 

methods and interfaces: direct data integration, air-gapped import and export, and 
semantic data exchange. Survey results show engineers have different trust and 

perceived risk levels towards different data exchange methods. Engineers 

behavioral intentions towards using a data exchange method depend on perceiving 
the method as less risky and trustworthy. Understanding how data exchange 

methods and interfaces impact engineers' trust and risk perception can inform 

effective implementation of digital engineering and lead to more successful 
collaborative engineering design projects. 

Keywords. Collaborative Design Environments, Digital Engineering, Engineering 

Teams, Data Exchange, Risk, Trust 

Introduction 

Contemporary engineering deals with large-scale projects with high levels of complexity. 

Digital Engineering (DE) aims to overcome design and development challenges to create 

efficient, complex systems and systems-of-systems. For example, the design of a satellite 

requires an engineering team to complete various complex tasks in every stage of its 

lifecycle. Engineers must ensure the technical demands of their sub-systems and the 

entire integrated system are met while managing design and maintenance constraints. 

This leads to constant interaction and information flow both within and between 

subsystems. Engineers need to rely on the data they receive to deliver expected outcomes 

for a task, making the data exchange process critical for collaborative engineering 

systems. 

The quality of received data impacts the engineers' trust and perceived risk in using 

the data to complete their tasks [1, 2, 3]. High-quality data decreases perceived risk and 
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increases trust levels towards using the data. The shift in engineering practice to DE 

changes how engineers receive data, which might have different impacts on engineers’ 

trust and perceived risk levels for the data. 

This paper investigates engineers' trust and risk perception towards three selected 

data exchange methods (DEMs) in DE environments: direct data integration, air-gapped 

import and export, and semantic data exchange. A survey of industry professionals (from 

a related STEM field with an average of 17.3 years of experience) with questions based 

on the Technology Acceptance Model (TAM) and Unified Theory of Acceptance and 

Use of Technology (UTAUT2) questionnaires measures perceived risk and trust levels. 

Understanding how engineers perceive DEMs can help identify preferences and design 

more effective DEM leading to more successful collaborative engineering systems. 

1. Background 

1.1. Digital Engineering 

DE creates computer readable models that represent all aspects of the system and 

supports design, development, manufacture, and operation activities throughout its 

lifecycle. DE can improve communication, facilitate design trade-space evaluation 

capabilities [4] and develop innovative and effective solutions in a virtual environment. 

Increased complexity in engineering products can require hundreds to thousands of 

engineers and engineering teams from different disciplines to work together in parallel 

tasks simultaneously [5]. Satellites are an example of a complex engineering product 

where multiple cross-functional teams work together [6, 7], meaning there are often 

many physical components and design participants [8]. Multi-disciplinary engineering 

teams rely on input information from other engineers achieved through data exchange 

[9]. However, the data exchange process is challenging because data produced by each 

engineering team is specific to their disciplines produced by diverse software tools [10]. 

Data heterogeneity in collaborative engineering processes requires interoperable 

applications that exchange both the data and the data semantics [11, 12, 13]. Data 

integration is a pre-requisite for supporting collaboration among multi-disciplined 

engineering teams to overcome heterogeneity and create a common view of the data [14].  

1.2. Data Exchange Methods 

The literature identifies many data exchange methods to make the collaborative 

engineering process more efficient. Earlier research identifies the necessity of modeling 

the design process to perform tasks in parallel for concurrent engineering [5]. This 

perspective focuses on modeling the engineering tasks prior to managing information 

flow by designing the process with identification and allocation of dependent, 

independent, and interdependent tasks [5]. This technique depends on human activities 

and coordination of tasks by managing human interactions and information flow [15]. 

Data integration enables the exchange of knowledge across heterogeneous data 

sources to achieve semantic interoperability [16]. There are various perspectives in the 

literature to identify different data integration processes. Some studies suggest 

developing local independent ontologies and then mapping them into a global ontology 

to bridge the exchange and integration of data across different teams and organizations 

[17]. Others suggest a single ontology that semantically integrates data from several data 
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sources to track engineering tasks [18]. Hennig et al. suggest creating a data exchange 

standard as a common data model for single ontology data integration. Lee and Kim also 

propose a semantic technology with a single ontology to exchange context information 

from several data sources [19]. Other literature investigates multiple ontology 

approaches to represent various data sources, store information in local ontologies, and 

then orchestrate local ontologies to build various applications [20] using linked data to 

produce software applications in the production system environment. 

Based on the literature review, the SERC research roadmap for Digital Engineering 

[21], and the second author’s experience in industry, this paper investigates three DEMs 

illustrated in Figure 1 ranging from manual to automated processes. Air-gapped import 

and export represents earlier perspectives in data exchange processes that involve 

modeling and coordinating tasks that are dependent on human actions. Direct data 

integration is commonly used in industry to directly enable data exchange between data 

sources. Finally, as it holds a major place in literature [10, 11, 12, 13, 18] but is not yet 

in widespread use in industry, semantic data exchange enables data exchange among 

sources using globalized data transformation processes. 

 
 

 

Figure 1. Selected DEMs: air-gapped import and export, direct data integration, and semantic data exchange. 

Air-gapped Import and Export (AG) uses one or more intermediate data structures 

to write data out of one tool environment and read into another tool environment. A 

human user or users participate in both export and import processes, possibly with 

different users for each process. This type of export and import between environments 

and usage of intermediate data structures creates a gap between the tool environments 

where data format translation is required to convert from one tool (the export) to the 

other (the import). 

Direct Data Integration (DI) involves point-to-point data connections between tools 

without the need for an intermediate data construct. Data may be pushed or pulled from 

one tool to another based on an established interface using a script, API, or established 

connections provided by tool vendors or other third-party vendors. The data exchange 

process does not have intermediate steps to represent data in a new environment. The 

human interaction with this method is in establishing the point-to-point connection. 

Semantic Data Exchange (SDE) involves a semantic database environment that can 

identify the data constructs in tool environments and make the data available to other 

tool environments based on an underlying ontology. This method does not depend on 

APIs or point-to-point connections between specific tools. This method relies on an 

ontology to describe the data in the environment and the different tools that may need to 

access and exchange the data. Human interaction in this method focuses on the ontology 

development and continued evaluation of the ontology for necessary growth. 
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1.3. Data Quality Effects on Perceived Risk and Trust 

Dong identifies communication as the recipe for a successful team [21] because 

engineers need to communicate technical demands and constraints [8], making data 

exchange a vital factor for system success. Literature shows data quality affects how the 

engineers view received data [1, 2]. As engineers face a high volume of information, 

they are obligated to decide what to use based on perceived quality. Criteria that affect 

data quality include accuracy, currency, coverage, and believability [2, 22, 23]: accuracy 

is the extent to which information is free from error, currency is the degree to which the 

information is up-to-date rather than obsolete, coverage is the completeness of the 

information, and believability is the extent to which the information is plausible [2]. 

Information science and management science investigates how data quality affects 

trust and perceived risk, which subsequently influences the data exchange success [1, 2]. 

Kelton et al. states trustworthiness of information can be evaluated by its accuracy, 

objectivity, validity, and stability [2], which suggests engineers base trust on several 

criteria. Nicolaou et al. find evidence that information quality affects trust and perceived 

risk. High quality of information is matched with higher levels of trust and lower levels 

of perceived risk, and decision-makers’ intention to use received information changes 

based on these levels [1]. Alternative DEMs in digital engineering might provide 

different information quality, affecting engineers’ trust and perceived risk. 

2. Research Objective 

Existing research in information and management science investigates how information 

quality affects trust and perceived risk levels in inter-organizational systems [1, 2]. This 

background focuses on strategic collaborative relationships and user perspectives versus 

our desire to look at intra-organizational systems within project teams. Several DEMs 

have evolved over time in DE that can impact perceived data quality by engineers, thus 

changing trust and risk perceptions. However, there has not been a study in collaborative 

systems engineering or the DE domain that investigates how DEM impacts engineers’ 

perceived trust and risk levels, the subject of this paper. Literature also suggests 

demographic factors such as experience, education, age, and gender might affect trust 

and perceived risk; however, investigating these factors is out of the scope at this time. 

More specifically, this paper investigates three research questions asked of DE, also 

illustrated in the logic model (Figure 2): 

1. How do DEMs affect trust and perceived risk levels? 

2. How does trust for a DEM affect behavioral intention towards it? 

3. How does perceived risk for a DEM affect behavioral intention towards it? 

 

Figure 2. Logic model showing hypothesis paths adapted and modified from UTAUT2 model. 
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3. Study Methodology 

3.1. Survey 

This paper uses a survey which adopts questions from the Technology Acceptance Model 

(TAM) and Unified Theory of Acceptance and Use of Technology (UTAUT2) 

questionnaires to measure trust (T), perceived risk (PR), and behavioral intention (BI) in 

digital engineering environments for each DEM [25, 26, 27]. Participants completed a 

two-part, anonymous, online survey. The first part includes nine screening questions to 

collect standard demographic information to characterize the population. The second part 

includes 28 standard item assessment questions, including 27 5-point Likert scale 

(‘Definitely disagree’ to ‘Definitely agree’) questions and one open ended question. 

The survey has subsections for each DEM with questions to measure dimensions of 

trust, perceived risk, and behavioral intention. Where trust and perceived risk parcels 

investigate perceptions of participants towards the method, behavioral intention 

measures their intention of using the method. Three questions in each dimension measure 

internal consistency. Questions are given in a randomized order in each subsection. 

Sample questions for each dimension of the DDI method include: 

� DDI-T3: “I will trust the information I receive via a direct data integration.” 

� DDI-PR2: “Using a direct data integration method exposes design and 

development tasks to an overall risk.” 

� DDI-BI1: “Assuming I have the infrastructure to use direct data integration, I 

intend to use it for information exchange.” 

3.2. Demographics 

Prior to the experiment, survey items collect demographic information including age, 

gender, English language ability, education, and experience levels. 23 participants (3 

female and 20 male) completed the survey. Participants ranged from 26 to 79 years of 

age. 16 participants reported they are native/fluent English speakers, 6 participants 

reported TOEFL (>90) or IELTS scores (>7.5) and 1 participant reported TOEFL (<60) 

or IELTS scores (<7). Experience in a STEM-related field ranged from 0 to 40 years 

with an average of 17.3 years. Participants reported education in a STEM related field 

ranging from 4 to 12 years including undergraduate and graduate studies with an average 

of 6.8 years. The survey does not directly gather data about familiarity with the selected 

DEMs, but the survey recruitment was posted via a professional networking website to 

target participants who are industry professionals working in a STEM-related field. 

4. Results 

The 5-point Likert scale responses were converted to number scales for measurement 

ranging from 1 (Definitely disagree) to 5 (Definitely agree). High scores indicate higher 

trust, higher perceived risk, and higher behavioral intention for using the method. 

Statistical analysis uses an average of three responses for each dimension. Out of 621 

responses for 5-point Likert scale items, two responses are missing: one from DDI-T3 

coded items and one from SDE-PR3 coded items. For those participants’ responses, the 

average of two available items are calculated. 
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To check internal consistency of items, Cronbach's alpha ( ) is calculated for each 

dimension of each method. All the items except the DDI-PR have  > 0.7, establishing 

sufficient consistency for analysis. Analysis using data from DDI-PR cannot make any 

statistical conclusions because this item does not have internal consistency and is 

therefore excluded from the results covered here. 

4.1. Effect of DEM on Trust and Perceived Risk 

One-way ANOVA analyzes measured trust and perceived risk levels across the three 

DEMs. Results show a statistically significant difference between measured trust (p-

value=0.0006) and perceived risk (p-value= 1.45E-04) of participants. ANOVA analysis 

for the PR dimension omits the DDI method to only investigate differences between AG 

and SDE methods because DDI-PR data lacks internal consistency. Results show 

participants trust the DDI method the most (average = 3.94) and the AG method the least 

(average = 3.01). They perceive the AG method as the riskiest method (average = 3.94) 

and the SDE method as the safest method (average = 2.80). 

 

Figure 3. Histogram of measured trust level for each DEM. 

 

Figure 4. Histogram of measured perceived risk for each DEM. 

4.2. Effect of Trust on Behavioral Intention 

Table 1 shows significant positive correlations between trust and behavioral intention 

dimensions for all methods. Three simple regression models further statistical analysis. 

Results in Table 2 show a statistically significant relationship between trust and 

behavioral intention dimensions for all methods. Figure 5 illustrates the positive 

relationship where higher trust is associated with more intention of using that DEM. 
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Table 1. Correlation between trust, risk, and behavioral intention for each method. 
 DDI-T DDI-BI  

DDI-T 1   

DDI-BI 0.619 1  

 AG-T AG-PR AG-BI 
AG-T 1   

AG-PR -0.542 1  
AG-BI 0.621 -0.340 1 

 SDE-T SDE-PR SDE-BI 
SDE-T 1   

SDE-PR -0.811 1  

SDE-BI 0.577 -0.451 1 

 
Table 2. Regression results for the effect of trust on behavioral intention for each method. 

 Coefficient Std. Error t-stat p-value 
DDI-BI ~ DDI-T 1.212 0.336 3.608 0.002 

AG-BI ~ AG-T 0.729 0.201 3.627 0.002 

SDE-BI ~ SDE-T 0.631 0.195 3.234 0.004 

 

Figure 5. Scatter plots comparing trust and behavioral intent for each method. 

4.3. Effect of Perceived Risk on Behavioral Intention 

Table 1 shows a significant negative correlation between perceived risk and behavioral 

intention dimensions for all methods. Two simple regression models perform further 

statistical analysis. Results in Table 3 show a statistically significant relationship 

between perceived risk and behavioral intention dimensions for SDE method. However, 

results show no statistically significant relationship between measured perceived risk and 

behavioral intention for the AG method. Figure 6 illustrates the relationship where higher 

perceived risk tends to lower intentions for using that DEM. 

 
Table 3. Regression results for the effect of perceived risk on behavioral intent for each method. 

 Coefficient Std. Error t-stat p-value 
AG-BI ~ AG-PR -0.477 0.288 -1.658 0.112 

SDE-BI ~ SDE-PR -0.403 0.174 -2.315 0.031 
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Figure 6. Scatter plots comparing perceived risk and behavioral intent for each method. 

5. Discussion 

5.1. Implications for Digital Engineering 

While this is an initial survey with a limited dataset, these preliminary trends are 

informative regarding perceived trust, risk and behavioral intent among the three DEMs 

considered. The general findings show participants have higher intentions to use an 

exchange method if they perceive it as trustworthy and less risky, which aligns with 

literature [5, 6, 7]. Before discussing results for each DEM, it should be noted that the 

main goal of the paper is not to favor a specific DEM but to show importance of 

perceived data quality so future studies can consider this aspect while developing DEMs.  

Results show that respondents have a high trust in the direct data exchange method 

and intend to use it if available. This is also reinforced in a low perceived risk, though 

additional data points are required to determine if the perceived risk of the direct data 

exchange method is statistically significant. This is promising for DE development and 

implementation as the first steps on DE implementation roadmaps move from air gapped 

import/export exchange methods towards direct data integration. The high trust 

correlated with the intent to use direct data exchange suggests it is being implemented 

more widely and is recognized in practice as a preferred and trusted means for exchange. 

The air gapped method has the lowest average perceived trust and highest average 

perceived risk of the methods evaluated. It has the lowest average behavioral intent, but 

also high variability, suggesting it may still be a widely exercised option for data 

exchange, even if it is perceived as risky and not trustworthy. This aligns with the 

commonly held belief that more human touch time moving data from one source to 

another creates a greater chance that errors are introduced and propagated, resulting in 

unreliable solutions. This is the data exchange method that DE methodologies seek to 

replace as part of the digital transformation to enable data availability to more users 

without the potential for introducing human errors. 

Semantic data exchange was perceived as a more trustworthy exchange method than 

air gapped exchange, but not as trustworthy as direct data exchange. This could be 

attributed to the limited exposure and availability of this method, as it is the newest 

method and not utilized as widely in industry yet. This would also align with a lower 

behavioral intent as it is not perceived to be ready for implementation at this time. As 

A.Z. Avsar et al. / Effects of Data Exchange Methods on Perceived Risk and Trust256



this method is still under active development as part of digital transformation efforts, it 

is intriguing that it scored above other methods that are more commonly experienced and 

utilized in industry. It is important to see statistical significance that semantic data 

exchange is seen as a trustworthy source for data exchange, though it is more telling of 

the current state of practice (or lack thereof) that is still perceived as high risk as the 

semantic methods themselves are still in development. 

5.2. Limitations 

Results from this study are subject to several limitations. First, the sample size is small, 

and the statistical analysis reflects results only for the selected population. Results might 

show variations in a larger sample size or a different sampled population. Second, the 

survey does not collect information about the knowledge level of participants towards 

the selected DEMs; participants' responses might change based on their experience and 

comfort level. Third, analysis does not include any DDI method PR dimension because 

data from this group does not have internal consistency and therefore has been excluded 

in the analysis section. Lastly, although the paper shows significant results for the 

relationship between demographic factors and trust and perceived risk dimensions, there 

is a high correlation between these factors, so a larger sample size and more detailed 

statistical analysis are required to make a statistically significant conclusion. 

6. Conclusion 

This study concludes that engineers have different trust and perceived risk levels towards 

different data exchange methods from the sampled population. The data provides 

statistically significant evidence that trust and risk perceptions affect behavioral 

intentions towards using DEMs. Results also suggest that the availability of and exposure 

to technology is a key factor determining the behavioral intention. Analysis results show 

that demographic factors have a significant effect on trust and risk perception. Due to 

limitations in the dataset, further analysis is required to produce more explanatory 

conclusion about how and why demographic factors influence engineers' trust and 

perceived risk levels towards different data exchange methods. A future study with a 

larger sample size can provide further evidence and more significant statistical results. 
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