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Abstract. Integration of data from multiple sources into a single, project wide view 

is a necessity to keep up with increasing complexity and transdisciplinary 
considerations in engineering projects. Semantic Web Technologies (SWT) provide 

a unique way of linking and reasoning upon data from disparate sources to gain 

insights on the data viewed as a whole. By ingesting project data into a tool-agnostic 
repository and applying targeted reasoning, SWT can be used to perform system 

level verification tasks, such as providing a Key Performance Indicator (KPI) of 

completeness that gives project design and status insights to key stakeholders. This 
paper reports research creating a Semantic System Verification Layer (SSVL) as an 

extension to an existing Digital Engineering framework that utilizes SWT. This 

process and procedure are applied to a relevant use case to demonstrate and clarify 
the functions. 
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Introduction 

Today’s systems are often highly complex and utilize advancements in technology and 

theory across a multitude of different domains. This expands the capabilities of systems 

as well as their adaptability, but it also introduces unique challenges that come from 

transdisciplinary collaboration. The move to model-based engineering design and 

analysis has enabled higher levels of fidelity and consistency within domain specific 

design tasks. However, model-based engineering by itself does not begin to solve 

problems of interoperability and transdisciplinary collaboration; the data is still stored in 

individual models that often do not interact with other models. To perform these 

interactions, separate processes must be designed, implemented, and maintained. 

Digital Engineering (DE) is a field that seeks to address these processes using  

“authoritative sources of system data and models as a continuum across disciplines to 

support lifecycle activities from concept through disposal” [1]. DE seeks to integrate 

model-based systems engineering (MBSE) with domain specific model-based 

engineering (MBE). This integration, and the higher-level assessments enabled by it, 

begin to address cross-model project concerns apparent in a transdisciplinary design and 

analysis environment. 
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Central to the DE concept is the notion of the Digital Thread (DT) [2]. The DT is 

the full set of digital engineering tools, models, and generated data comprising the full 

lifecycle of a system. The DT seeks to promote the traceability of system data and 

facilitate analysis throughout that lifecycle. These goals are achieved through the 

creation of an Authoritative Source of Truth (AST) [1]. The AST functions as a central 

store of data that is shared among all aspects of the DT, enforcing a consistent and 

accessible representation of the system across its lifecycle. With all aspects of the DT 

residing within an AST, the AST thus serves as a basis for both data accessibility and 

traceability as well as potentially facilitating system verification and artificial 

intelligence applications. 

One promising approach to implementing such an AST is the use of ontologies. 

Ontologies are human and machine-readable lexicons comprising a taxonomy of terms 

and logical restrictions placed upon them. In the context of a broader suite of Semantic 

Web Technologies (SWT), ontologies serve as both a basis to meaningfully tag data for 

knowledge representation and a basis for automated inferencing [3]. Ontologies facilitate 

a number of applications potentially of interest to a DE environment, such as automated 

inferencing and enhanced search. Notably, when used in a DE environment, ontologies 

permit the collation of meaningfully tagged data in a tool-agnostic repository which can 

serve as an AST. In this capacity then, the use of ontologies and SWT promote both 

interoperability and consistency of data across tools in the DT  [4], [5].  

This paper proposes the use of an SWT based Semantic System Verification Layer 

(SSVL) that is added onto a previously reported framework for data integration in a DE 

context [6]. This framework uses SWT to address data integration concerns inherent in 

transdisciplinary efforts, and the SSVL utilizes features of the SWT stack to perform 

verification checks upon a system represented in an ontology aligned AST. This paper 

demonstrates the SSVL by applying the broader framework to an Information 

Technology (IT) use case and producing a completeness metric that assesses data at the 

system level. 

1. Background 

The use of ontologically aligned data as the AST in a DE context has been explored in 

prior research. A major topic in the literature has been in the creation of an AST that 

contains all system data in an ontologically aligned format. Moser et al. formulate an 

Engineering Knowledge Base (EKB) that acts as a central hub for information [7]. Other 

efforts have focused on the question of interoperability among external toolsets [6], [8]. 

In these applications the AST serves as a predictable, neutral representation of system 

information which each tool independently accesses via an appropriate interface. Thus, 

the role of the ontology is to facilitate the creation of those interfaces while the external 

tools are permitted to work from the same store, promoting coordination and 

interoperability [7].  

The use of ontologies and MBSE models such as Systems Modeling Language 

(SysML) system models has also been a focus. Interestingly, most of these efforts have 

converged upon the use SysML stereotypes to inject a SysML model with ontologically 

relevant terms [6], [8]–[11], though they differ in both method and objectives. One 

approach [12] uses an Ontology Modeling Language (OML) that simultaneously 

specifies both a SysML model and an underlying domain ontology. Doing so permits the 

execution of large numbers of semantically enhanced design checks. Tudorache and 
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Alani use SysML as an inspiration for ontology development work, although they stop 

short of addressing specific mapping functionality between a SysML model and an 

ontologically aligned dataset [9]. Other efforts  [4]–[6], [8] coordinate a suite of 

ontologies aligned under a single top level [13], which are then used to create an 

extensible, project and domain agnostic framework for coordinating the exchange of 

system data across tools. Alongside appropriate software interfaces [6], the DE 

framework described in these works is used to facilitate a DT across various engineering 

workflows. 

Verification using ontologies in the DE realm is less studied. Hagedorn et al. [14] 

describe the use of an ontology-based DE architecture for performing system-wide 

design evaluations. While the authors demonstrate a simple weight roll-up example, they 

stop short of directly inspecting a system against some set of rules or requirements. As 

noted above [12], ontologically backed design checking in the context of MBSE models 

has also been explored via the OML language. However, this requires the creation of 

specialized OML models as opposed to more common MBSE tools. Steyskal and 

Wimmer reported the use of the Shapes Constraint Language (SHACL) to perform 

constraint checking [15]. SHACL 2  is a protocol that permits the expression of 

verification checks as graph “shapes,” with matching data subjected to logical tests. This 

permits evaluation of ontologically aligned data, which is typically created under an 

“open world” assumption, under a closed world assumption. Using this approach, the 

authors constructed consistency checks between viewpoints, in the context of multiple 

Resource Description Framework (RDF) graphs with mappings between them.  

Still missing from relevant literature reviewed is a holistic assessment of a DE 

system model as a system-level representation of aggregate parts that are informed or 

populated by MBE and MBSE components. This paper’s SSVL seeks to fill that gap by 

extending an existing DE framework [6] to include a system level verification component. 

This verification layer uses SHACL to evaluate the information associated with a system. 

A simple case study focusing on the completeness of data is used to demonstrate the 

potential of the proposed SSVL. 

2. Methods 

2.1. Description of the DE Framework 

The method presented in this paper builds on previous research using ontologies and the 

SWT stack as foundational technologies for building a tool-agnostic AST [6]. 

2.1.1. Structure and Interfaces 

The SSVL extends a method that uses SysML to characterize the system under analysis. 

Said method provides clear guidance on how external tools can interact with the 

ontologically aligned data by defining three different types of notional interfaces to the 

data store: the Mapping Interface, the Specified Model interface, and the Direct Interface 

(Figure 1) [6].  

 
2 https://www.w3.org/TR/shacl/ 
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Figure 1. The DE Architecture and Interfaces Proposed in [6]. 

Mapping interfaces enable the capture of external model data in ontologies by 

establishing connections between the model data and an ontologically aligned version of 

that model. This is inherently tool-specific and requires a mechanism for matching data 

contained in the tool model with ontologically relevant terms. For example, stereotypes 

in the SysML specification can be used to tag model elements with ontology terms for 

mapping to an ontology aligned representation. The Specified Model interfaces the DT 

itself within the broader system model. The System model characterizes a given MBE 

model by its input and output parameters, which are in turn defined throughout the 

system model. The Specified Model interface uses the ontology-aligned AST to afford 

these parameters to external tools. This aggregation can occur independently of the data 

source. For example, a cost model analysis may input parameters associated with a 

Computer Aided Drawing (CAD) model for part numbers, information derived from a 

vendor parts list for pricing, and parameters populated by a project management tool for 

man time information. In addition, related Finite Element Analysis or Thermal analyses 

might affect those CAD parameters, with the outputs from those analyses representing 

metadata stored as value properties in the SysML system of analysis model. Thus, a 

single model pulls information that originated from two or more different tools whose 

data is present in the ontological representation of the system model.  

The Direct Interface refers to interacting with semantic data directly with standard 

SWT tools. This might include directly manipulating or accessing data through semantic 

queries or performing constraint checking using semantic rules or constraint languages. 

While this technology stack may be used in previous interface types, the distinction lies 

in the level of abstraction at which the user interfaces with the full stack of models 

2.1.2. Semantic System Verification Layer 

While the DE framework described above provides a means to repeatably access 

information in an ontological AST via third party tools, it does not afford a direct means 

to inspect that data. Issues introduced via the model interface might be propagated 
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through to third party tools and cause subsequent errors or inaccuracies. The proposed 

SSVL seeks to mitigate this by adding a verification layer.  

Utilizing the DE framework described above, there are at least two possible 

approaches to extending the framework to include system level verification tasks. The 

first involves a definition of a model via the specified model interface that directly deals 

with a specific verification task. For example, a system level verification on multiplicity 

of certain component types could be represented within the model, and subsequently 

exported to an external verification tool via one of the interfaces to the AST. This 

independent model in the DT could be beneficial for certain system-level analysis tasks. 

However, this approach could quickly become overly burdensome to address some 

system-level verification tasks and is not inherently reusable.  

The second approach to system-level verification tasks would be the use of the SWT 

stack itself. This approach creates a separate layer in the methodology apart from the DT 

aspects of DE that is focused solely on system verification. It performs operations on the 

system data in tool-agnostic form and takes advantage of SWT benefits such as forward 

chaining, extensibility, and reusability.  

The SSVL follows the second approach by allowing the use of the SWT stack to 

prove system verification capability in a DE context. The SSVL is implemented using 

SHACL shapes, which are executed as a set of verification rules using an appropriate 

reasoning engine. Since the ontology-aligned data can involve complex patterns of data 

representation, the SHACL-SPARQL syntax is used. SHACL-SPARQL allows highly 

targeted verification based upon the SPARQL Protocol and RDF Query Language 

(SPARQL). In this syntax, a query is used to target specific patterns of data 

representation, yielding a set of entities that are then subjected to verification in the form 

of logical comparison to some desired state. When SSVL is activated by running an 

appropriate SWT software against the AST, the SHACL shapes produce a Boolean value 

indicating whether the constraints were violated or not. If they were violated, further 

details of the failures are provided in the form of a verification report written in the RDF 

language. As this all relies upon tool and potentially project agnostic data representation, 

this layer is primed for automation and reusability.  

The SSVL thus utilizes the Direct Interface discussed above to access the SWT stack 

directly. Because these shapes act upon the entirety of the AST, they may be applied 

throughout the entirety of a DT for data verification and guidance. In practice, this means 

that shapes may act at both a domain specific and a domain agnostic level. For example, 

the SSVL might perform simple completeness checks at a domain agnostic level and 

perform highly sophisticated checks based upon the input of subject matter experts at the 

domain specific level.  

2.1.3. Implementation of the Semantic System Verification Layer 

As the SSVL relies upon off-the-shelf SWT software, the implementation of it is highly 

environment specific. Since relatively few RDF repositories support within-tool use of 

SHACL-SPARQL, the SSVL was implemented parallel to the AST.  The open-source 

pySHACL Python package [16] was used as a SHACL engine. PySHACL implements a 

SHACL verification engine and report generation tool. It works alongside the open-

source RDFLib package3, which facilities the parsing, manipulation, and serialization of 

RDF graphs within a Python environment.  

 
3 https://github.com/RDFLib/rdflib 
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The workflow thus proceeds as follows (Figure 2). The AST is populated via the 

model and mapping interfaces described in [6]. At any point prior to the activation of the 

SSVL, SHACL shapes are defined (either using an SWT tool or simply by writing an 

RDF document) as a SHACL graph. At the time of activation, the contents of the AST 

are downloaded as an RDF document. A python script retrieves this document, parses 

the data into an RDFLib graph object, and then activates the pySHACL engine. The 

engine evaluates the SHACL graph against the contents of the AST, and then generates 

a verification report which may be used to diagnose any noted issues. 

 
Figure 2. Workflow for the SSVL implementation. 

2.2. Implementation Case Study 

To demonstrate the SSVL discussed above, it is applied to an IT architecture use case 

based upon one reported in previous research [6], [17]. The use case focuses on a simple 

cyber system with a hypothetical security vulnerability. In the previously reported case 

[6], a MATLAB script performs the necessary analysis to populate a Cyber Vulnerability 

Scoring System (CVSS)4 vector and assign a summary score to the system. In this case 

we first evaluate the representation of the system in the AST by using the SSVL to check 

the completeness and formatting of the model data. Note, the specific tools represent 

implementation choices aimed at demonstrating the coordination of multiple tools via an 

AST, not an underlying requirement of the method or its implementation in software.  

2.2.1. Structure and Interfaces 

Per the method described in [6], the system is defined using a SysML block definition 

diagram, shown in Figure 3. The model uses stereotypes to bind ontological terms to the 

SysML model, permitting automated generation of an ontology-aligned representation 

of the system through the mapped interface. The system comprises a set of software and 

hardware elements each of which has a CVSS property indicating a summary 

vulnerability state.  

 

 
4 https://nvd.nist.gov/vuln-metrics/cvss# 
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Figure 3. Cyber System Block Definition Diagram (left) and Partial Instance Table (right) 

The model was instantiated to facilitate analysis, and the scoring for the Cyber 

System score was intentionally left blank, while another field was seeded with an invalid 

CVSS vector. The first omission poses a potential risk of error for downstream domain 

models to raise errors, which might require diagnosis of the full DT. The latter indicates 

that an analysis might not have been completed, again indicating possible issues for 

downstream analysis. Thus, the objective of the case study is to catch this omission using 

the described SSVL to facilitate integration of the MBSE and MBE models. The grayed-

out portions of the table indicate values that are not related to the Cyber System CVSS 

Analysis. 

2.2.2. Design Validation 

The SSVL was configured with SHACL shapes specifying constraints that should be 

enforced in the data graph. Shapes are defined to check two aspects of the model: the 

completeness of the model insofar as there are no blank fields and the fidelity of the 

included data. These checks are implemented via two verification rules: 

 

1. No blank (null) fields are acceptable in a complete system model 

2. The CVSS Vector should follow the regular expression pattern:  

AV:[NALP]\/AC:[LH]\/PR:[NLH]\/UI:[NR]\/S:[UC]\/C:[NLH]\/I:[NLH]\/A:[NLH] 

(Figure 4) 

 

 

Figure 4. SHACL Shapes Graph for Cyber Completeness Metric. Prefixes are excluded from the figure for 

brevity. 

Once the AST is populated, the SHACL engine evaluates these verification rules 

and generates a summary report. Note that the RDF graphs are extensible, and so 
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potentially many SHACL shapes can be applied to the AST in addition to the ones shown. 

Indeed, different sets of shapes might be applied at different phases of a DT. 

3. Results 

Before performing an analysis via MATLAB, the SSVL is invoked, and a compliance 

report is generated (Figure 5). As expected, the SHACL shapes identify two issues in the 

AST data derived from the SysML model - that the system model is not complete and 

that some of the data does not conform to the proper format. The blank value must be 

remedied in the SysML instantiation, and the CVSS vector either fixed in model or 

corrected with an appropriate MBE tool. 

 
Figure 5. Validation Report – Incomplete (left) and Complete (right). 

By simply navigating to the sh:focusNode instances indicated in the report, one can 

quickly traverse the data in the AST to identify the specific elements in the SysML model 

that pose potential problems. Thus, when deployed in the broader DE environment the 

SSVL provides both a means to anticipate problems in the MBE models and obtain 

information about their provenance. 

After the modeler remedies the SysML, MATLAB runs the SME model for CVSS 

scores and updates the triple store with the results of the analysis. A subsequent run of 

the SSVL indicates no verification errors, and thus the model is complete, and the data 

adheres to the specified standards according to the verification. 

4. Discussion 

The addition of the SSVL to a digital engineering framework expands the functionality 

of the AST beyond a DT connecting various domain and system models; it allows for 

system wide assessment. The use of SWT to implement the framework and SSVL 

extension takes advantage of the inherent reasoning capabilities of a knowledge base 

rooted in formal logic. Thus, the SSVL enables emergent behavior made possible by the 

implementation of a DE framework.  

The IT use case presented, while simplistic, illustrates the potential uses of the SSVL. 

The method itself is domain agnostic and intended to be translated to many different 

domains. Because the SSVL acts directly upon the AST, it is thus possible to view the 

entirety of a DT at once and thus craft powerful system verification rules. The use of 

standard recommendations like SHACL enables a broader development community and 

greater reuse opportunity across projects and organizations. SHACL graphs are 
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inherently extensible, meaning that an expanding ecosystem of verifications can be 

incrementally developed, shared, and reused across engineering projects and domains. 

As with the broader ontology space, the potential for reusability and expressive logical 

tests is a significant strength of this approach. Combined with an overall DE framework, 

the SSVL offers significant potential to realize a highly detailed, automated, and reusable 

system verification tool. Future research should explore this potential within a more 

detailed domain context.  

Some limitations should be noted. As is commonly the case with RDF, scale and 

speed are factors that limit the scope of the SSVL. The example presented in this paper 

is very simple – more complex systems using variants of this methodology do show 

higher computational costs. These may be mitigated through any number of software 

solutions both within the SWT stack and using external tools, and optimal approaches 

should be investigated. The use of SHACL-SPARQL dramatically limits the toolset 

available for implementation – indeed this implementation was forced to implement the 

SSVL in parallel to the AST rather than integrated into it as would be preferable. While 

this may change in time, it does pose a challenge for creating a highly automated DE 

workflow. Moreover, the use of SWT for verification subjects the verification to the 

limits of SWT: applications involving significant numerical computation would thus be 

best implemented using an external tool and an appropriate interface to the AST. A 

hybrid approach is likely necessary for many systems. Future research should explore 

such an approach. 

5. Future Work and Conclusion 

Further research can be done to integrate SHACL constraint checking into a broader 

methodology in three important ways: (1) SHACL constraint checking can be developed 

to be accessed and modified programmatically as part of a larger workflow; (2) SHACL 

constraint checking can be expanded to capture other types of compliance checks such 

as consistency and satisfiability; and (3) a compliance ontology can be created and 

automatically populated by SHACL results. The latter integration would allow for the 

use of SHACL result parameters in additional implementations of the DE environment’s 

interfaces, which would enable more flexible connections to broader design and analysis 

tasks. 

In conclusion, this paper presents a novel Semantic System Verification Layer 

(SSVL) that uses SWT to perform verification on data sourced from multiple models 

connected via a Digital Thread and captured in an Authoritative Source of Truth. It 

demonstrates usage of the SSVL by performing an assessment of completeness based on 

system data aggregated in an AST through the use of a mapping interface. It uses SHACL 

and a direct interface to the ontology aligned data to perform constraint checking to 

establish a binary assessment of whether the system model was complete according to 

its context dependent definition. The use case results show a progressive example that 

shows both an incomplete model and how the SSVL can help remediate it. 

D. Dunbar et al. / Use of Semantic Web Technologies to Enable System Level Verification 71



 

Acknowledgement 

This research was sponsored by the Systems Engineering Research Center (SERC), a 

University Affiliated Research Center (UARC) housed at Stevens Institute of 

Technology. 

References 

[1] N.N., Digital Engineering Strategy, Department of Defense, Office of the Deputy Assistant Secretary of 

Defense for Systems Engineering, Jun. 2018. https://ac.cto.mil/wp-content/uploads/2019/06/2018-

Digital-Engineering-Strategy_Approved_PrintVersion.pdf, accessed June, 20 2022. 
[2] W. Roper, There is no spoon: The new digital acquisition reality. United States Air Force, 2020. 

https://software.af.mil/wp-content/ uploads/2020/10/There-Is-No-Spoon-Digital-Acquisition-7-Oct-

2020-digital- version.pdf, accessed June, 20 2022. 
[3] T. R. Gruber, The Role of Common Ontology in Achieving Sharable, Reusable Knowledge Bases, 

KR'91: Proceedings of the Second International Conference on Principles of Knowledge Representation 
and Reasoning, April 1991, pp. 601–602. 

[4] T. J. Hagedorn, B. Smith, S. Krishnamurty, and I. Grosse, Interoperability of disparate engineering 

domain ontologies using basic formal ontology, J. Eng. Des., vol. 30, no. 10–12, pp. 625–654, Dec. 2019, 

doi: 10.1080/09544828.2019.1630805. 
[5] M. A. Bone, M. R. Blackburn, D. H. Rhodes, D. N. Cohen, and J. A. Guerrero, Transforming systems 

engineering through digital engineering, J. Def. Model. Simul. Appl. Methodol. Technol., vol. 16, no. 4, 

pp. 339–355, Oct. 2019, doi: 10.1177/1548512917751873. 
[6] D. Dunbar et al., Driving Digital Engineering Integration and Interoperability Through Semantic 

Integration of Models with Ontologies, arXiv:2206.10454, 2022. 

[7] T. Moser, The Engineering Knowledge Base Approach, in: S. Biffl and M. Sabou (eds.) Semantic Web 
Technologies for Intelligent Engineering Applications, Springer International Publishing, Cham, 2016, 

pp. 85–103. doi: 10.1007/978-3-319-41490-4_4. 

[8] M. Bone, M. Blackburn, B. Kruse, J. Dzielski, T. Hagedorn, and I. Grosse, Toward an Interoperability 
and Integration Framework to Enable Digital Thread, Systems, vol. 6, no. 4, p. 46, Dec. 2018, doi: 

10.3390/systems6040046. 

[9] T. Tudorache and L. Alani, Semantic Web Solutions in the Automotive Industry, in S. Biffl and M. Sabou 
(eds.) Semantic Web Technologies for Intelligent Engineering Applications, Springer International 

Publishing, Cham, 2016, pp. 297–326. doi: 10.1007/978-3-319-41490-4_12. 

[10] J. S. Jenkins and N. F. Rouquette, “Semantically-Rigorous Systems Engineering Modeling Using SysML 
and OWL, 5th International Workshop on Systems & Concurrent Engineering for Space Applications, 

2012, https://trs.jpl.nasa.gov/bitstream/handle/2014/43338/12-5065_A1b.pdf, accessed June 20, 2022. 

[11] D. A. Wagner, M. B. Bennett, R. Karban, N. Rouquette, S. Jenkins, and M. Ingham, An ontology for 
State Analysis: Formalizing the mapping to SysML, 2012 IEEE Aerospace Conference, Big Sky, MT, 

Mar. 2012, pp. 1–16. doi: 10.1109/AERO.2012.6187335. 
[12] D. Wagner, S. Y. Kim-Castet, A. Jimenez, M. Elaasar, N. Rouquette, and S. Jenkins, CAESAR Model-

Based Approach to Harness Design, 2020 IEEE Aerospace Conference, Big Sky, MT, USA, Mar. 2020, 

pp. 1–13. doi: 10.1109/AERO47225.2020.9172630. 
[13] R. Arp, B. Smith, and A. D. Spear, Building ontologies with basic formal ontology. MIT Press, Boston, 

2015. 

[14] T. Hagedorn, M. Bone, B. Kruse, I. Grosse, and M. Blackburn, Knowledge Representation with 
Ontologies and Semantic Web Technologies to Promote Augmented and Artificial Intelligence in 

Systems Engineering, INSIGHT, vol. 23, no. 1, pp. 15–20, 2020, doi: https://doi.org/10.1002/inst.12279. 

[15] S. Steyskal and M. Wimmer, Leveraging Semantic Web Technologies for Consistency Management in 
Multi-viewpoint Systems Engineering, in: S. Biffl and M. Sabou (eds.) Semantic Web Technologies for 
Intelligent Engineering Applications, Springer International Publishing, Cham, 2016, pp. 327–352. doi: 

10.1007/978-3-319-41490-4_13. 
[16] Sommer, Ashley and Car, Nicholas, pySHACL. Zenodo, 2022. doi: 10.5281/ZENODO.4750840. 

[17] M. R. Blackburn et al., Transforming Systems Engineering through Model-Centric Engineering, Final 

Technical Report SERC-2020-TR-009, WRT-1008 (NAVAIR, Jun. 2020. 
 

D. Dunbar et al. / Use of Semantic Web Technologies to Enable System Level Verification72


