

Use of Semantic Web Technologies to

Enable System Level Verification in Multi-

Disciplinary Models

Daniel DUNBAR1, Thomas HAGEDORN, Mark BLACKBURN and Dinesh VERMA

Stevens Institute of Technology, Hoboken, USA

Abstract. Integration of data from multiple sources into a single, project wide view

is a necessity to keep up with increasing complexity and transdisciplinary
considerations in engineering projects. Semantic Web Technologies (SWT) provide

a unique way of linking and reasoning upon data from disparate sources to gain

insights on the data viewed as a whole. By ingesting project data into a tool-agnostic
repository and applying targeted reasoning, SWT can be used to perform system

level verification tasks, such as providing a Key Performance Indicator (KPI) of

completeness that gives project design and status insights to key stakeholders. This
paper reports research creating a Semantic System Verification Layer (SSVL) as an

extension to an existing Digital Engineering framework that utilizes SWT. This

process and procedure are applied to a relevant use case to demonstrate and clarify
the functions.

Keywords. model-based systems engineering, semantic web, ontologies, model

validation and verification, knowledge representation, digital engineering

Introduction

Today’s systems are often highly complex and utilize advancements in technology and

theory across a multitude of different domains. This expands the capabilities of systems

as well as their adaptability, but it also introduces unique challenges that come from

transdisciplinary collaboration. The move to model-based engineering design and

analysis has enabled higher levels of fidelity and consistency within domain specific

design tasks. However, model-based engineering by itself does not begin to solve

problems of interoperability and transdisciplinary collaboration; the data is still stored in

individual models that often do not interact with other models. To perform these

interactions, separate processes must be designed, implemented, and maintained.

Digital Engineering (DE) is a field that seeks to address these processes using

“authoritative sources of system data and models as a continuum across disciplines to

support lifecycle activities from concept through disposal” [1]. DE seeks to integrate

model-based systems engineering (MBSE) with domain specific model-based

engineering (MBE). This integration, and the higher-level assessments enabled by it,

begin to address cross-model project concerns apparent in a transdisciplinary design and

analysis environment.

1 Corresponding Author, Mail: ddunbar1@stevens.edu.

Transdisciplinarity and the Future of Engineering
B.R. Moser et al. (Eds.)
© 2022 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/ATDE220632

63

Central to the DE concept is the notion of the Digital Thread (DT) [2]. The DT is

the full set of digital engineering tools, models, and generated data comprising the full

lifecycle of a system. The DT seeks to promote the traceability of system data and

facilitate analysis throughout that lifecycle. These goals are achieved through the

creation of an Authoritative Source of Truth (AST) [1]. The AST functions as a central

store of data that is shared among all aspects of the DT, enforcing a consistent and

accessible representation of the system across its lifecycle. With all aspects of the DT

residing within an AST, the AST thus serves as a basis for both data accessibility and

traceability as well as potentially facilitating system verification and artificial

intelligence applications.

One promising approach to implementing such an AST is the use of ontologies.

Ontologies are human and machine-readable lexicons comprising a taxonomy of terms

and logical restrictions placed upon them. In the context of a broader suite of Semantic

Web Technologies (SWT), ontologies serve as both a basis to meaningfully tag data for

knowledge representation and a basis for automated inferencing [3]. Ontologies facilitate

a number of applications potentially of interest to a DE environment, such as automated

inferencing and enhanced search. Notably, when used in a DE environment, ontologies

permit the collation of meaningfully tagged data in a tool-agnostic repository which can

serve as an AST. In this capacity then, the use of ontologies and SWT promote both

interoperability and consistency of data across tools in the DT [4], [5].

This paper proposes the use of an SWT based Semantic System Verification Layer

(SSVL) that is added onto a previously reported framework for data integration in a DE

context [6]. This framework uses SWT to address data integration concerns inherent in

transdisciplinary efforts, and the SSVL utilizes features of the SWT stack to perform

verification checks upon a system represented in an ontology aligned AST. This paper

demonstrates the SSVL by applying the broader framework to an Information

Technology (IT) use case and producing a completeness metric that assesses data at the

system level.

1. Background

The use of ontologically aligned data as the AST in a DE context has been explored in

prior research. A major topic in the literature has been in the creation of an AST that

contains all system data in an ontologically aligned format. Moser et al. formulate an

Engineering Knowledge Base (EKB) that acts as a central hub for information [7]. Other

efforts have focused on the question of interoperability among external toolsets [6], [8].

In these applications the AST serves as a predictable, neutral representation of system

information which each tool independently accesses via an appropriate interface. Thus,

the role of the ontology is to facilitate the creation of those interfaces while the external

tools are permitted to work from the same store, promoting coordination and

interoperability [7].

The use of ontologies and MBSE models such as Systems Modeling Language

(SysML) system models has also been a focus. Interestingly, most of these efforts have

converged upon the use SysML stereotypes to inject a SysML model with ontologically

relevant terms [6], [8]–[11], though they differ in both method and objectives. One

approach [12] uses an Ontology Modeling Language (OML) that simultaneously

specifies both a SysML model and an underlying domain ontology. Doing so permits the

execution of large numbers of semantically enhanced design checks. Tudorache and

D. Dunbar et al. / Use of Semantic Web Technologies to Enable System Level Verification64

Alani use SysML as an inspiration for ontology development work, although they stop

short of addressing specific mapping functionality between a SysML model and an

ontologically aligned dataset [9]. Other efforts [4]–[6], [8] coordinate a suite of

ontologies aligned under a single top level [13], which are then used to create an

extensible, project and domain agnostic framework for coordinating the exchange of

system data across tools. Alongside appropriate software interfaces [6], the DE

framework described in these works is used to facilitate a DT across various engineering

workflows.

Verification using ontologies in the DE realm is less studied. Hagedorn et al. [14]

describe the use of an ontology-based DE architecture for performing system-wide

design evaluations. While the authors demonstrate a simple weight roll-up example, they

stop short of directly inspecting a system against some set of rules or requirements. As

noted above [12], ontologically backed design checking in the context of MBSE models

has also been explored via the OML language. However, this requires the creation of

specialized OML models as opposed to more common MBSE tools. Steyskal and

Wimmer reported the use of the Shapes Constraint Language (SHACL) to perform

constraint checking [15]. SHACL 2 is a protocol that permits the expression of

verification checks as graph “shapes,” with matching data subjected to logical tests. This

permits evaluation of ontologically aligned data, which is typically created under an

“open world” assumption, under a closed world assumption. Using this approach, the

authors constructed consistency checks between viewpoints, in the context of multiple

Resource Description Framework (RDF) graphs with mappings between them.

Still missing from relevant literature reviewed is a holistic assessment of a DE

system model as a system-level representation of aggregate parts that are informed or

populated by MBE and MBSE components. This paper’s SSVL seeks to fill that gap by

extending an existing DE framework [6] to include a system level verification component.

This verification layer uses SHACL to evaluate the information associated with a system.

A simple case study focusing on the completeness of data is used to demonstrate the

potential of the proposed SSVL.

2. Methods

2.1. Description of the DE Framework

The method presented in this paper builds on previous research using ontologies and the

SWT stack as foundational technologies for building a tool-agnostic AST [6].

2.1.1. Structure and Interfaces

The SSVL extends a method that uses SysML to characterize the system under analysis.

Said method provides clear guidance on how external tools can interact with the

ontologically aligned data by defining three different types of notional interfaces to the

data store: the Mapping Interface, the Specified Model interface, and the Direct Interface

(Figure 1) [6].

2 https://www.w3.org/TR/shacl/

D. Dunbar et al. / Use of Semantic Web Technologies to Enable System Level Verification 65

Figure 1. The DE Architecture and Interfaces Proposed in [6].

Mapping interfaces enable the capture of external model data in ontologies by

establishing connections between the model data and an ontologically aligned version of

that model. This is inherently tool-specific and requires a mechanism for matching data

contained in the tool model with ontologically relevant terms. For example, stereotypes

in the SysML specification can be used to tag model elements with ontology terms for

mapping to an ontology aligned representation. The Specified Model interfaces the DT

itself within the broader system model. The System model characterizes a given MBE

model by its input and output parameters, which are in turn defined throughout the

system model. The Specified Model interface uses the ontology-aligned AST to afford

these parameters to external tools. This aggregation can occur independently of the data

source. For example, a cost model analysis may input parameters associated with a

Computer Aided Drawing (CAD) model for part numbers, information derived from a

vendor parts list for pricing, and parameters populated by a project management tool for

man time information. In addition, related Finite Element Analysis or Thermal analyses

might affect those CAD parameters, with the outputs from those analyses representing

metadata stored as value properties in the SysML system of analysis model. Thus, a

single model pulls information that originated from two or more different tools whose

data is present in the ontological representation of the system model.

The Direct Interface refers to interacting with semantic data directly with standard

SWT tools. This might include directly manipulating or accessing data through semantic

queries or performing constraint checking using semantic rules or constraint languages.

While this technology stack may be used in previous interface types, the distinction lies

in the level of abstraction at which the user interfaces with the full stack of models

2.1.2. Semantic System Verification Layer

While the DE framework described above provides a means to repeatably access

information in an ontological AST via third party tools, it does not afford a direct means

to inspect that data. Issues introduced via the model interface might be propagated

D. Dunbar et al. / Use of Semantic Web Technologies to Enable System Level Verification66

through to third party tools and cause subsequent errors or inaccuracies. The proposed

SSVL seeks to mitigate this by adding a verification layer.

Utilizing the DE framework described above, there are at least two possible

approaches to extending the framework to include system level verification tasks. The

first involves a definition of a model via the specified model interface that directly deals

with a specific verification task. For example, a system level verification on multiplicity

of certain component types could be represented within the model, and subsequently

exported to an external verification tool via one of the interfaces to the AST. This

independent model in the DT could be beneficial for certain system-level analysis tasks.

However, this approach could quickly become overly burdensome to address some

system-level verification tasks and is not inherently reusable.

The second approach to system-level verification tasks would be the use of the SWT

stack itself. This approach creates a separate layer in the methodology apart from the DT

aspects of DE that is focused solely on system verification. It performs operations on the

system data in tool-agnostic form and takes advantage of SWT benefits such as forward

chaining, extensibility, and reusability.

The SSVL follows the second approach by allowing the use of the SWT stack to

prove system verification capability in a DE context. The SSVL is implemented using

SHACL shapes, which are executed as a set of verification rules using an appropriate

reasoning engine. Since the ontology-aligned data can involve complex patterns of data

representation, the SHACL-SPARQL syntax is used. SHACL-SPARQL allows highly

targeted verification based upon the SPARQL Protocol and RDF Query Language

(SPARQL). In this syntax, a query is used to target specific patterns of data

representation, yielding a set of entities that are then subjected to verification in the form

of logical comparison to some desired state. When SSVL is activated by running an

appropriate SWT software against the AST, the SHACL shapes produce a Boolean value

indicating whether the constraints were violated or not. If they were violated, further

details of the failures are provided in the form of a verification report written in the RDF

language. As this all relies upon tool and potentially project agnostic data representation,

this layer is primed for automation and reusability.

The SSVL thus utilizes the Direct Interface discussed above to access the SWT stack

directly. Because these shapes act upon the entirety of the AST, they may be applied

throughout the entirety of a DT for data verification and guidance. In practice, this means

that shapes may act at both a domain specific and a domain agnostic level. For example,

the SSVL might perform simple completeness checks at a domain agnostic level and

perform highly sophisticated checks based upon the input of subject matter experts at the

domain specific level.

2.1.3. Implementation of the Semantic System Verification Layer

As the SSVL relies upon off-the-shelf SWT software, the implementation of it is highly

environment specific. Since relatively few RDF repositories support within-tool use of

SHACL-SPARQL, the SSVL was implemented parallel to the AST. The open-source

pySHACL Python package [16] was used as a SHACL engine. PySHACL implements a

SHACL verification engine and report generation tool. It works alongside the open-

source RDFLib package3, which facilities the parsing, manipulation, and serialization of

RDF graphs within a Python environment.

3 https://github.com/RDFLib/rdflib

D. Dunbar et al. / Use of Semantic Web Technologies to Enable System Level Verification 67

The workflow thus proceeds as follows (Figure 2). The AST is populated via the

model and mapping interfaces described in [6]. At any point prior to the activation of the

SSVL, SHACL shapes are defined (either using an SWT tool or simply by writing an

RDF document) as a SHACL graph. At the time of activation, the contents of the AST

are downloaded as an RDF document. A python script retrieves this document, parses

the data into an RDFLib graph object, and then activates the pySHACL engine. The

engine evaluates the SHACL graph against the contents of the AST, and then generates

a verification report which may be used to diagnose any noted issues.

Figure 2. Workflow for the SSVL implementation.

2.2. Implementation Case Study

To demonstrate the SSVL discussed above, it is applied to an IT architecture use case

based upon one reported in previous research [6], [17]. The use case focuses on a simple

cyber system with a hypothetical security vulnerability. In the previously reported case

[6], a MATLAB script performs the necessary analysis to populate a Cyber Vulnerability

Scoring System (CVSS)4 vector and assign a summary score to the system. In this case

we first evaluate the representation of the system in the AST by using the SSVL to check

the completeness and formatting of the model data. Note, the specific tools represent

implementation choices aimed at demonstrating the coordination of multiple tools via an

AST, not an underlying requirement of the method or its implementation in software.

2.2.1. Structure and Interfaces

Per the method described in [6], the system is defined using a SysML block definition

diagram, shown in Figure 3. The model uses stereotypes to bind ontological terms to the

SysML model, permitting automated generation of an ontology-aligned representation

of the system through the mapped interface. The system comprises a set of software and

hardware elements each of which has a CVSS property indicating a summary

vulnerability state.

4 https://nvd.nist.gov/vuln-metrics/cvss#

D. Dunbar et al. / Use of Semantic Web Technologies to Enable System Level Verification68

Figure 3. Cyber System Block Definition Diagram (left) and Partial Instance Table (right)

The model was instantiated to facilitate analysis, and the scoring for the Cyber

System score was intentionally left blank, while another field was seeded with an invalid

CVSS vector. The first omission poses a potential risk of error for downstream domain

models to raise errors, which might require diagnosis of the full DT. The latter indicates

that an analysis might not have been completed, again indicating possible issues for

downstream analysis. Thus, the objective of the case study is to catch this omission using

the described SSVL to facilitate integration of the MBSE and MBE models. The grayed-

out portions of the table indicate values that are not related to the Cyber System CVSS

Analysis.

2.2.2. Design Validation

The SSVL was configured with SHACL shapes specifying constraints that should be

enforced in the data graph. Shapes are defined to check two aspects of the model: the

completeness of the model insofar as there are no blank fields and the fidelity of the

included data. These checks are implemented via two verification rules:

1. No blank (null) fields are acceptable in a complete system model

2. The CVSS Vector should follow the regular expression pattern:

AV:[NALP]\/AC:[LH]\/PR:[NLH]\/UI:[NR]\/S:[UC]\/C:[NLH]\/I:[NLH]\/A:[NLH]

(Figure 4)

Figure 4. SHACL Shapes Graph for Cyber Completeness Metric. Prefixes are excluded from the figure for

brevity.

Once the AST is populated, the SHACL engine evaluates these verification rules

and generates a summary report. Note that the RDF graphs are extensible, and so

D. Dunbar et al. / Use of Semantic Web Technologies to Enable System Level Verification 69

potentially many SHACL shapes can be applied to the AST in addition to the ones shown.

Indeed, different sets of shapes might be applied at different phases of a DT.

3. Results

Before performing an analysis via MATLAB, the SSVL is invoked, and a compliance

report is generated (Figure 5). As expected, the SHACL shapes identify two issues in the

AST data derived from the SysML model - that the system model is not complete and

that some of the data does not conform to the proper format. The blank value must be

remedied in the SysML instantiation, and the CVSS vector either fixed in model or

corrected with an appropriate MBE tool.

Figure 5. Validation Report – Incomplete (left) and Complete (right).

By simply navigating to the sh:focusNode instances indicated in the report, one can

quickly traverse the data in the AST to identify the specific elements in the SysML model

that pose potential problems. Thus, when deployed in the broader DE environment the

SSVL provides both a means to anticipate problems in the MBE models and obtain

information about their provenance.

After the modeler remedies the SysML, MATLAB runs the SME model for CVSS

scores and updates the triple store with the results of the analysis. A subsequent run of

the SSVL indicates no verification errors, and thus the model is complete, and the data

adheres to the specified standards according to the verification.

4. Discussion

The addition of the SSVL to a digital engineering framework expands the functionality

of the AST beyond a DT connecting various domain and system models; it allows for

system wide assessment. The use of SWT to implement the framework and SSVL

extension takes advantage of the inherent reasoning capabilities of a knowledge base

rooted in formal logic. Thus, the SSVL enables emergent behavior made possible by the

implementation of a DE framework.

The IT use case presented, while simplistic, illustrates the potential uses of the SSVL.

The method itself is domain agnostic and intended to be translated to many different

domains. Because the SSVL acts directly upon the AST, it is thus possible to view the

entirety of a DT at once and thus craft powerful system verification rules. The use of

standard recommendations like SHACL enables a broader development community and

greater reuse opportunity across projects and organizations. SHACL graphs are

D. Dunbar et al. / Use of Semantic Web Technologies to Enable System Level Verification70

inherently extensible, meaning that an expanding ecosystem of verifications can be

incrementally developed, shared, and reused across engineering projects and domains.

As with the broader ontology space, the potential for reusability and expressive logical

tests is a significant strength of this approach. Combined with an overall DE framework,

the SSVL offers significant potential to realize a highly detailed, automated, and reusable

system verification tool. Future research should explore this potential within a more

detailed domain context.

Some limitations should be noted. As is commonly the case with RDF, scale and

speed are factors that limit the scope of the SSVL. The example presented in this paper

is very simple – more complex systems using variants of this methodology do show

higher computational costs. These may be mitigated through any number of software

solutions both within the SWT stack and using external tools, and optimal approaches

should be investigated. The use of SHACL-SPARQL dramatically limits the toolset

available for implementation – indeed this implementation was forced to implement the

SSVL in parallel to the AST rather than integrated into it as would be preferable. While

this may change in time, it does pose a challenge for creating a highly automated DE

workflow. Moreover, the use of SWT for verification subjects the verification to the

limits of SWT: applications involving significant numerical computation would thus be

best implemented using an external tool and an appropriate interface to the AST. A

hybrid approach is likely necessary for many systems. Future research should explore

such an approach.

5. Future Work and Conclusion

Further research can be done to integrate SHACL constraint checking into a broader

methodology in three important ways: (1) SHACL constraint checking can be developed

to be accessed and modified programmatically as part of a larger workflow; (2) SHACL

constraint checking can be expanded to capture other types of compliance checks such

as consistency and satisfiability; and (3) a compliance ontology can be created and

automatically populated by SHACL results. The latter integration would allow for the

use of SHACL result parameters in additional implementations of the DE environment’s

interfaces, which would enable more flexible connections to broader design and analysis

tasks.

In conclusion, this paper presents a novel Semantic System Verification Layer

(SSVL) that uses SWT to perform verification on data sourced from multiple models

connected via a Digital Thread and captured in an Authoritative Source of Truth. It

demonstrates usage of the SSVL by performing an assessment of completeness based on

system data aggregated in an AST through the use of a mapping interface. It uses SHACL

and a direct interface to the ontology aligned data to perform constraint checking to

establish a binary assessment of whether the system model was complete according to

its context dependent definition. The use case results show a progressive example that

shows both an incomplete model and how the SSVL can help remediate it.

D. Dunbar et al. / Use of Semantic Web Technologies to Enable System Level Verification 71

Acknowledgement

This research was sponsored by the Systems Engineering Research Center (SERC), a

University Affiliated Research Center (UARC) housed at Stevens Institute of

Technology.

References

[1] N.N., Digital Engineering Strategy, Department of Defense, Office of the Deputy Assistant Secretary of

Defense for Systems Engineering, Jun. 2018. https://ac.cto.mil/wp-content/uploads/2019/06/2018-

Digital-Engineering-Strategy_Approved_PrintVersion.pdf, accessed June, 20 2022.
[2] W. Roper, There is no spoon: The new digital acquisition reality. United States Air Force, 2020.

https://software.af.mil/wp-content/ uploads/2020/10/There-Is-No-Spoon-Digital-Acquisition-7-Oct-

2020-digital- version.pdf, accessed June, 20 2022.
[3] T. R. Gruber, The Role of Common Ontology in Achieving Sharable, Reusable Knowledge Bases,

KR'91: Proceedings of the Second International Conference on Principles of Knowledge Representation
and Reasoning, April 1991, pp. 601–602.

[4] T. J. Hagedorn, B. Smith, S. Krishnamurty, and I. Grosse, Interoperability of disparate engineering

domain ontologies using basic formal ontology, J. Eng. Des., vol. 30, no. 10–12, pp. 625–654, Dec. 2019,

doi: 10.1080/09544828.2019.1630805.
[5] M. A. Bone, M. R. Blackburn, D. H. Rhodes, D. N. Cohen, and J. A. Guerrero, Transforming systems

engineering through digital engineering, J. Def. Model. Simul. Appl. Methodol. Technol., vol. 16, no. 4,

pp. 339–355, Oct. 2019, doi: 10.1177/1548512917751873.
[6] D. Dunbar et al., Driving Digital Engineering Integration and Interoperability Through Semantic

Integration of Models with Ontologies, arXiv:2206.10454, 2022.

[7] T. Moser, The Engineering Knowledge Base Approach, in: S. Biffl and M. Sabou (eds.) Semantic Web
Technologies for Intelligent Engineering Applications, Springer International Publishing, Cham, 2016,

pp. 85–103. doi: 10.1007/978-3-319-41490-4_4.

[8] M. Bone, M. Blackburn, B. Kruse, J. Dzielski, T. Hagedorn, and I. Grosse, Toward an Interoperability
and Integration Framework to Enable Digital Thread, Systems, vol. 6, no. 4, p. 46, Dec. 2018, doi:

10.3390/systems6040046.

[9] T. Tudorache and L. Alani, Semantic Web Solutions in the Automotive Industry, in S. Biffl and M. Sabou
(eds.) Semantic Web Technologies for Intelligent Engineering Applications, Springer International

Publishing, Cham, 2016, pp. 297–326. doi: 10.1007/978-3-319-41490-4_12.

[10] J. S. Jenkins and N. F. Rouquette, “Semantically-Rigorous Systems Engineering Modeling Using SysML
and OWL, 5th International Workshop on Systems & Concurrent Engineering for Space Applications,

2012, https://trs.jpl.nasa.gov/bitstream/handle/2014/43338/12-5065_A1b.pdf, accessed June 20, 2022.

[11] D. A. Wagner, M. B. Bennett, R. Karban, N. Rouquette, S. Jenkins, and M. Ingham, An ontology for
State Analysis: Formalizing the mapping to SysML, 2012 IEEE Aerospace Conference, Big Sky, MT,

Mar. 2012, pp. 1–16. doi: 10.1109/AERO.2012.6187335.
[12] D. Wagner, S. Y. Kim-Castet, A. Jimenez, M. Elaasar, N. Rouquette, and S. Jenkins, CAESAR Model-

Based Approach to Harness Design, 2020 IEEE Aerospace Conference, Big Sky, MT, USA, Mar. 2020,

pp. 1–13. doi: 10.1109/AERO47225.2020.9172630.
[13] R. Arp, B. Smith, and A. D. Spear, Building ontologies with basic formal ontology. MIT Press, Boston,

2015.

[14] T. Hagedorn, M. Bone, B. Kruse, I. Grosse, and M. Blackburn, Knowledge Representation with
Ontologies and Semantic Web Technologies to Promote Augmented and Artificial Intelligence in

Systems Engineering, INSIGHT, vol. 23, no. 1, pp. 15–20, 2020, doi: https://doi.org/10.1002/inst.12279.

[15] S. Steyskal and M. Wimmer, Leveraging Semantic Web Technologies for Consistency Management in
Multi-viewpoint Systems Engineering, in: S. Biffl and M. Sabou (eds.) Semantic Web Technologies for
Intelligent Engineering Applications, Springer International Publishing, Cham, 2016, pp. 327–352. doi:

10.1007/978-3-319-41490-4_13.
[16] Sommer, Ashley and Car, Nicholas, pySHACL. Zenodo, 2022. doi: 10.5281/ZENODO.4750840.

[17] M. R. Blackburn et al., Transforming Systems Engineering through Model-Centric Engineering, Final

Technical Report SERC-2020-TR-009, WRT-1008 (NAVAIR, Jun. 2020.

D. Dunbar et al. / Use of Semantic Web Technologies to Enable System Level Verification72

