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Abstract. The task of automatic visual inspection has been tackled by numerous 
machine learning algorithms. However, there are no global comparative studies of 
the performance of these algorithms that use metrics directly relevant to their use in 
an industrial setting. We survey the performance of machine learning algorithms 
applied to the DAGM dataset, a reference dataset for industrial visual inspection. 
Our study reports the performance of 17 algorithms for which the learning and 
evaluation protocols are clear enough to be reproducible. However, not all of these 
algorithms are comparable, in the sense that they rely on different labelling or even 
different data. We group the comparable results, and conclude that the DAGM 
dataset no longer presents a major difficulty for the algorithms based on knowledge 
of the location of defects in the images. On the other hand, algorithms using only 
unlabelled images, which are the easiest to implement in practice, do not yet achieve 
industrially acceptable performance. 
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1. Introduction 

The best visual inspection systems for automatic defect detection are based on machine 
learning models such as convolutional neural networks (CNN). It is necessary to evaluate 
these algorithms in realistic environments because industrial inspection takes place in a 
very particular context for machine learning algorithms: there are many more non-
defective items than defective ones; defects can be very diverse (colour, size, shape), and 
acquisition conditions (lighting, vibrations, temperature, etc.) can influence image 
quality. Finally, for an industrial inspection system to be considered usable, it must be 
accurate, with error rates (false positives and false negatives) in the order of one percent. 

Data sets for industrial visual inspection are difficult to collect, and defect labelling 
must be done by an expert. There are few such datasets available today: the DAGM 
dataset [1], published in 2007, is the historical reference in the field. This dataset, whose 
properties are adapted to industrial realities, can therefore be used to compare visual 
inspection approaches. Here we review the results obtained so far on this dataset. 

Section 2 presents the characteristics of the DAGM dataset. Section 3 presents the 
performance criteria we have chosen here, and the methodology for collecting all the 
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necessary information from the bibliography. Section 4 proposes a discussion of the 
results and concludes with our final remarks. 

2. The DAGM Dataset 

The DAGM dataset2 [1] was published as part of the 2007 DAGM symposium for a 
competition on the subject of “weakly supervised learning for industrial optical 
inspection”, in order to help improve visual defect detection algorithms in industrial 
settings. The dataset was generated artificially, but was engineered to resemble real 
defect detection problems in the manufacturing industry. It is divided in two parts. The 
first part, containing 6 classes, is commonly referred to as the development dataset. The 
second part contains 4 classes and is referred to as the competition dataset. Examples of 
defective samples from each class are presented in Figure 1.  

Each development dataset contains 1000 images without defect and 150 images with 
defects. Each competition dataset contains 2000 images without defect and 300 images 
with defect. All images are 512x512 pixel 8-bit grayscale (pixel values range from 0 to 
255). Each dataset is also divided into a training and a testing sub-dataset. They each 
contain half of the data, but the number of defective and non-defective items is not 
balanced between both sets. Note that a deprecated link to the dataset3 does not include 
the training and testing sets and thus should be avoided to avoid reproducibility issues. 

There is a maximum of one defect per image, each defect is located by an ellipse 
surrounding its precise location. This dataset has been termed weakly labelled because 
the ellipses do not trim the defects to the pixel level. This should not be confused with 
the definition of weak supervision in this article, which will be given in Section 3. 

 

 
Figure 1. Samples from the DAGM dataset, from [1]. 

 

 
2  Link to the dataset: https://hci.iwr.uni-heidelberg.de/content/weakly-supervised-learning-industrial-

optical-inspection 
3 Deprecated: https://conferences.mpi-inf.mpg.de/dagm/2007/prizes.html 
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3. Survey of the Performance of Existing Algorithms 

The statistics we have chosen to report here are: False Positive Rate (FPR), False 
Negative Rate (FNR), Precision, Recall and F1-score (or F-score). We use the standard 
convention that positive samples are images that show a defect, and negative samples are 
defect-free images. 

FPR and FNR were chosen because they are very meaningful statistics in defect 
detection, as they can be related to the potential associated industrial costs. The precision, 
recall and F-score are traditionally used in machine learning to compare algorithms when 
dealing with unbalanced classes. Other statistics, such as the ROC Area Under Curve or 
the Average Precision are measures of a family of models: they describe the properties 
of a set of models, usually defined by varying the decision threshold. These statistics 
have not been selected because they do not relate to a finalized decision system: as long 
as a decision threshold is not chosen, the model is not completely defined. For each class, 
the statistics are computed as follows: 

� False Positive Rate: FPR = FP/(FP + TN)          (1) 
� False Negative Rate: FNR = FN/(FN + TP)          (2) 
� Precision: Pr = TP/(TP + FP)           (3) 
� Recall: Re = TP/(TP + FN) = 1 – FNR          (4) 
� F-score: 2Pr Re/(Pr + Re) = 2TP/(2TP + FP + FN)         (5) 
When the confusion matrix is not given in the original paper, Ndefect and Nclean being 

respectively the number of images with and without defect in the test set, the entries of 
the confusion matrix are computed as follows: 

� True Positives: TP = Re Ndefect           (6) 
� False Negatives: FN = Ndefect ���������	��defect         (7) 
� �
��
��������
��������������������������	��clean         (8) 
� True Negatives: TN = Nclean – FP           (9) 
The aforementioned performance statistics apply to image-level classification, with- 

out defect localization. We categorize these classification problems by their supervision 
level during learning. Here, we adopt the nomenclature of industrial defect detection, 
which differs from that of machine learning regarding “supervision”. The categories of 
supervision are defined as follows: 

� Full supervision refers to the use of all available features during learning, 
including the defect locations indicated by ellipses. For example, sliding 
window methods require a more or less precise location of the defect within the 
image. 

� Mixed supervision refers to the use of all image-level labels (defective / non- 
defective) during learning as well as a fraction of the precise defect locations. 

� Weak supervision refers to the sole use of all image-level labels during 
learning. 

� No supervision refers to the absence of images of defect during learning. 
We surveyed the evaluation protocols described in the various published articles to 

ensure a fair comparison of results. It is necessary to use a training/testing split of the 
data to ensure that the performance measures are unbiased. The DAGM dataset gives a 
default training/testing data split for each class, the use of which ensures comparable 
performance measures. However, these testing sets are rarely used in the literature: we 
have included all articles mentioning a training/testing split, even if this is not the default 
split. 
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We initially selected 60 articles by searching for articles using the DAGM dataset, 
using search engines like ScienceDirect and Google Scholar, or by using the references 
of other articles. Among these 60 articles, only 22 used test metrics compatible with ours. 
Indeed, some articles focus on segmentation performance only; others divert the DAGM 
dataset to classify the 10 textures; finally, some articles do not report statistics that can 
be related to FPR and FNR. Of these 22 articles, five do not describe a clear evaluation 
procedure, which compromises a fair comparison with other results. 

Table 1 displays the performance statistics for the final selection of 17 articles. All 
results reported here are obtained from algorithms that have been trained and tested on 
at least two classes of the DAGM dataset. The numbers reported here are either extracted 
from the original article or calculated using explicitly available information. This can be 
the number of positive / negative samples used for testing, a confusion matrix, or simply 
a sub-part of the sought statistics. 
Table 1. Performance statistics (in %) of different methods for industrial defect detection. Missing figures (not 
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that the source codes have been published by the authors. Classes refer to the number of datasets used for 
evaluation in each article. 

The references in bold indicate the articles for which the source code of the 
algorithms is published. Figure 2 provides another representation, by displaying the 
expected error rates for each algorithm, color coded to represent their supervision level. 

Table 1 shows that the DAGM benchmark is solved for fully supervised approaches, 
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and classification sub-networks. However, the dataset is still challenging in the weakly 
supervised and unsupervised frameworks. The weakly supervised method with the 
smallest FPR and FNR is Lin et al. [7] who introduce a novel CNN architecture trained 
using weak labels. Among the four unsupervised methods considered in this article, the 
method with the smallest FPR and FNR is Zavrtanik et al.’s DRAEM [2], which is an 
autoencoder (AE) trained using only negative, defect-free samples, and custom generated 
defects. The model still manages to output a full segmentation of the defect despite not 
using strong labels for training. It is also interesting to note that all unsupervised methods 
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use autoencoders or GANs, whereas weakly, mixed and fully supervised methods use 
CNN or custom algorithms. These custom algorithms are based on manually designed 
features (such as Local Binary Patterns) fed to a classifier, such as a Support Vector 
Machine (SVM) or a fully connected neural network. 

 

Figure 2. False negative rate versus false positive rate announced for the different algorithms (colour represents 
the level of supervision) 

4. Discussion and conclusion 

Out of an initial selection of 60 articles, we could only compare 17 of them because of 
evaluation procedure issues. On the one hand, some articles use dubious evaluation 
procedures, not clarifying how the algorithm was tested and trained. On the other hand, 
some articles do not use metrics that are relevant for a real industrial inspection system. 
We therefore advocate testing protocols using the default split between training and 
testing, as published by Wieler et al. [1], and reporting confusion matrices to improve 
the comparability of results. This would ensure the computation of all relevant statistics 
on the same basis, without bias in favour of either algorithm. 

The results of Table 1 show that the DAGM dataset is solved by the best fully- and 
mixed-supervised methods. Many results can be considered to meet the industrial 
performance requirements, including those of some weakly-supervised methods. 
Industrial datasets are characterized by a strong imbalance of data in favour of non-
defective items, a diverse defect typology, and variable environmental factors, such as 
temperature, vibration, or camera settings. Further testing on real-world datasets is 
necessary to confirm the applicability of the state-of-the-art models to real-world 
industrial inspection. 

As expected, unsupervised methods, which use less expert information, are not as 
powerful as other methods. Figure 2 clearly shows that no unsupervised method reaches 
error rates in the order of the percent for both false positives and false negatives. 
Unsupervised methods can help answer industrial requirements, because they use no 
labelling for learning and they can adapt to new defect typologies. The use of these 
algorithms could therefore drive down the cost of production of datasets, and offer 

P. Carvalho et al. / A Survey of Machine Learning Approaches for Visual Inspection 259



increased performance for novel defect detection. We advocate developing and applying 
new unsupervised learning algorithms to industrial inspection datasets, including DAGM, 
with the aim to achieve performance suitable for industrial usage.  
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