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Abstract. In this article, we apply the stability theory of differential equations, based 

on the improved infectious disease transmission model SEIS, to describe the change 
in the number of infections when the lurker is a non-staff. In the process of the spread 

of infectious diseases, we establish the relationship between various groups, and 

establish the equation data solving algorithm. On this basis, a complex network 
model is established to describe the influence of the movement of various groups of 

people in the system on the number of infections when the lurker is a staff member. 

At the same time, the cellular automata simulation in accordance with the complex 
network models is carried out through the collected data. Finally, using the 

probabilistic model of the spread of infectious diseases, the impact of the protective 

effect on the spread of infectious diseases is analyzed when staff in public places 
take appropriate protective measures. Through the establishment of the probabilistic 

model and the curve fitted by the python program, we conclude that at the beginning 

of the spread of infectious diseases, the fastest and best protective measures can not 
only slow down the speed of the spread of infectious diseases, but also effectively 

reduce the infection in the later stages of transmission the proportion of the people. 
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1. Introduction 

This is an actual problem of the spread of infectious diseases in a particular closed system. 

In 2020, the sudden outbreak of COVID-19 caused the virus to spread again, and words 

such as the spread of infectious diseases became a hot topic [1, 2]. Daily data updates 

also make people realize that quantitative research on the spread of infectious diseases 

from visual charts can effectively help predict and control the spread of infectious 

diseases [3-6]. We establish an infectious disease transmission SEIS model, a complex 

network model, and a probability model that can be transmitted multiple times in a closed 

space to study the changes in the number of infections caused by different initial lurkers 

[7-10]. Through the model, we analyze the impact of protective measures on the spread 

of infectious diseases. 
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First, we build the SEIS model to study the change in the number of infections over 

time. The range of activities of other people and staff in public places is different, and 

the density of people is also different. The traditional SIS model cannot reflect the effect 

of this difference, so we improve the SEIR model and obtain the advanced SEIS model. 

Using the SEIS model, the problem of the number of infections when the lurkers are non-

workers was studied. Secondly, we establish a complex network model and use cellular 

automata to simulate the simulation results of the number of infected people over time. 

In the end, we assume that workers take certain precautions. Therefore, on the basis of 

the first two models, a probability model of virus transmission is established, and the 

protection effect numerical value is substituted into the model simulation analysis to 

consider the impact of protection measures. 

2. SEIS Model 

During the spread of infectious diseases, the total number of people in the closed system 

N remains unchanged, that is, birth rate and death rate are not considered. The population 

is divided into three categories: Susceptible, Lurker, and Infected, marked as  ,  , , 

respectively. 

  
Taking into account the above assumptions, we first use differential equations to 

express the changes in the numbers of the three groups of people over time. First of all, 

for the susceptible people: the number of susceptible people  over time  = the 

number of people recovered  - the number of infected people in the susceptible 

population . 

                                             (1) 

Secondly, for the lurker crowd: the change in the number  of the lurker crowd  

over time  = the infected population in the incubation period among the susceptible 

population  - the number of people transformed from the lurker crowd to 

the infected , where  is the probability of a lurker being transformed into an infected 

person. So the differential equation is obtained: 

                                          (2) 

Finally, for the infected population: the amount of change  in the number of 

infected people  over time  = the number of people transformed from latent people 

into infected people  - the number of recovered people : 

                                                           (3) 

Based on the above three formulas, we perform simulations. The above formulas 

constitute a Markov chain, that is, the changes in the number of people in Sn+1, Ln+1, 

and In+1 tomorrow are only related to the number of infected people today. Then we can 

express the number of people in the three groups of people on the Nth day as the following 

three formulas: 

T. Yan et al. / Simulation of Infectious Disease Propagation72



Sn+1= Sn–r * B * (In+Ln ) * + y*In                                              (4) 

Ln +1= Ln+ r*B*In *-a*Ln                                                       (5) 

In+1= In+ a*Ln- y*In                                                       (6) 

Then we use python program to perform simulation tests, substitute numerical 

calculations, and get the effect diagram, as shown in Figure 1. 

 

Figure 1. Changes in the number of three categories of people. 

 
Figure 2. The complex network structure of virus transmission. 

3. Complex Network Model 

The complex network model takes into account the superposition of individual 

information and viral spread. In real life, people can move. Therefore, we adopt a 

dynamic network model to describe the network structure of virus spreading. The 

network layer individuals walk randomly, but the individuals can only have contact with 

other neighbors within a given radius r, that is, each individual can only have connections 

with other individuals within the same radius r at the current moment. The network 

structure of virus transmission is shown in Figure 2. 

The individual movement is regarded as the movement of the node on the plane. The 

position of the node over time is set to  and the moving speed is set to  

, . In this model, it is further assumed that the 

modulus of the moving speed of individuals is constant and the modulus of all individuals 

is the same. That is, short-range jump is set to ,N. At the initial 

T. Yan et al. / Simulation of Infectious Disease Propagation 73



moment, i.e. ,  nodes are randomly distributed on the two-dimensional plane. At 

each time, the nodes follow the wandering (refresh ). Each node updates its position 

and direction angle as follows: 

                                (7) 

Among them,  is N independently distributed random variables, uniformly 

taken from . Assuming that in a closed system, the movement of individuals in 

public places must be long-distance jumps. Therefore, the probability of a person's long-

distance jump is  and the probability of short-distance jump is . 

The movement follows the above formula (7). Consequently, there is 

. For a long-range jump, there is 

 with the probability of . 

4. Cellular Automata Simulations 

To collect data, we perform cellular automata simulations based on the complex network 

model, as shown in Figures 3 and 4. 

 

Figure 3. Cellular automata simulations at time = 1 (left) and at time = 31 (right). 

 

Figure 4. Cellular automata simulations at time = 44 (left) and at time = 68 (right). 

 

Through simulation, the change of the number of various groups of people in the 

system with time when the initial lurker is a staff member is obtained, as shown in Figure 

5: 

T. Yan et al. / Simulation of Infectious Disease Propagation74



  

Figure 5. Changes in the number of three categories of people. 

5. Comparative Analysis 

By comparing the trend charts of the three categories of people when the initial lurker is 

a staff member and a non-staff member, we can clearly see that when the initial lurker is 

a staff member, in the early stage of infection, the susceptible people are in the incubation 

period. The early change rate of the population increases exponentially, and the number 

of susceptible populations also plummets. When non-staff are the initial lurkers, the 

change is gentler. This is because although the moving range of the staff itself is not as 

large as that of the non-staff, but because he is in a public place, the density of people 

and the degree of contact are higher than those of the non-staff. In addition, because of 

the closed space, we assume that the total number of people remains unchanged and there 

is no change in immunity. Therefore, in the two trend graphs, the changing numbers of 

the three types of people tend to be in a dynamic balance in the end. 

6. Probability Model 

Assuming that staff in public places have appropriate protective measures, the 

transmission rate of this infectious disease will be reduced. Therefore, a probabilistic 

model based on the simulation of the movement of people is established. Among them, 

the short-distance transmission rules of the virus are as follows: 

(1)  represents the effective transmission distance of the virus, and  is the 

density of people infected with the virus within the range of ; 

(2) the probability of people being infected with the virus is determined by equation 

(8); 

             (8) 

In the above formula (8),  

(1)  represents the probability that a susceptible person being infected with 

the virus within the effective transmission distance r1 at time t. 
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(2)  represents the probability of a person being infected with the virus 

at time t. 

(3)  indicates the protective effect of the protective measures adopted 

by the staff, which will reduce the probability of infection . Considering that the 

protective measures of other personnel are not as good as those of the staff, the protective 

effect of the protective measures adopted by other personnel is set as . 

(4)  is the basic probability of spread of the virus in close contact. 

(5)  represents the proportion of people taking protective measures in the 

system. 

The effect of protection on the spread of infectious diseases is shown in Figure 6. 

 

Figure 6. The effect of protection on the spread of infectious diseases.  

7. Conclusion 

In a closed system, the population is divided into three categories: Susceptible, Lurker, 

and Infected. Based on the improved SEIS model, the changes in the number of infected 

people over time when the lurkers are non-staff are simulated. In addition, through the 

establishment of a complex network model and the simulation of cellular automata, the 

changes in the number of infected people over time when the lurkers are staff are 

simulated. Finally, a probabilistic immune model is established to analyze the impact of 

protective effects on the spread of infectious diseases when workers in public places have 

appropriate protective measures. Through the establishment of the probabilistic model 

and the fitting of the curve diagram with the help of the python program. Through 

analysis, we conclude that in the early stage of infection, when the latent person is a staff 

member, the number of people in the incubation period increases rapidly, and the number 

of susceptible people drops sharply. When the lurkers are non-staff, the changes in the 

numbers of the three groups are relatively gentle. Moreover, at the beginning of the 

spread of infectious diseases, the fastest and best protective measures can not only slow 

down the speed of the spread of infectious diseases, but also effectively reduce the 

proportion of infected people in the later stages of transmission. 
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