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Abstract: According to the definition of quasiweak almost periodic point, we 

introduce the definition of ( )GQW f in the paper. We studied topological structure 

of G-quasiweak almost periodic point set. We have the following two results: (1) 

Let ( , )Y d � be a compact G�metric space and :f X X� be equicontinuous. 

Let
1{ }n nf �
� be G-strongly uniform converge to the map f and ( )k G nx QW f� .  

If lim kk
x x

��
� , then ( )Gx QW f� ; (2) Let ( , )Y d � be a compact G-metric 

space and :f X X� be equicontinuous. If
1{ }n nf �
� is G-strongly uniform 

converge to f, then we have limsup ( ) ( )G n GQW f QW f� .The conclusions 

results generalize the corresponding results given in [Journal of Southwest China 
Normal University: Natural Science Edition 44(2019), 40-44]. 

Keywords. Topological structure, metric G-space, G-strongly uniform 

convergence 

1. Introduction 

Strongly uniform convergence is an important tool to deal with function sequence map, 

series with function terms and generalized integral with parametric variables and is also 

an important concept in topological dynamical systems. It has become one of the main 

topics of nonlinear science and is widely used in many fields such as engineering 

technology, computer, biology, informatics and economics. Therefore, strongly 

uniform convergence dynamical system has attracted great attention of scholars at 

home and abroad. The research results can be found in [1-17]. For example, Ji [1] 

proved that if sequence maps 1{ }n nf �
� are strongly uniform converge to the 

map f where f is equicontinuous, then we can get that limsup ( ) ( )nQW f QW f� ; 

Wang [2] proved that
1

( )n
m n m

W f
� �

� �

( )nW f( n is a subset of ( )W f under strongly uniform 

convergence. 

According to the definition, we know that G-strongly uniform convergence can 

deduce strongly uniform convergence, but the opposite is not necessarily true. 

Therefore, the concept of G-strongly uniform convergence is different from strongly 

uniform convergence.  
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In this paper, it is studied that topological structure of G-quasiweak almost 

periodic point set under strongly uniform convergence of group action. We have the 

following two results. 
Theorem2.3 Let ( , )Y d � be a compact G� metric space and :f X X� be 

equicontinuous. Let
1{ }n nf �
� be G-strongly uniform converge to the map f 

and ( )k G nx QW f� .  If lim kk
x x

��
� , then ( )Gx QW f� . 

Theorem2.4 Let ( , )Y d � be a compact G� metric space and :f X X� be 

equicontinuous. If
1{ }n nf �
� is G-strongly uniform converge to f, then we have 

limsup ( ) ( )G n GQW f QW f�
. 

2. G-Quasi Weak Qlmost Periodic Point 

Throughout this section, the definition of equicontinuity can be found in [1] and the 

definitions of �G strongly uniform convergence, metric space, metric G-space 

and ( )GQW f can be found in [17-20], respectively. 
Lemma2.1(see[21])Let ( , )Y d � be a metric G-space and G be compact. For 

any 0	 
 there exists 10 � 	� � such that 1( , )d x y �� implies 

( , )d gx gy 	� �  for all g G� . 

Lemma2.2Let ( , )Y d � be a metric G-space and
1{ }n nf �
� be G-strongly uniform 

converge to f. If ( )G nx QW f� , then ( )Gx QW f� . 

Proof: Since sequence map
1{ }n nf �
� are G� strongly uniform converge to the map f , 

for any 0	 
 there exist a positive integer 1N N� such that 1n N� implies 

( ( ), ( ))
2

l l
nd pf y sf y 	� �

 
for any x X� , ,p s G� and l N�

                   
(1) 

Let m N� satisfying 1m N� . Then ( )G mx QW f� . Hence for the above 0
2

	

 there 

exists 2 0N 
 and 0{ }i in �
� such that for any 0i � there exists ig G� such that 

2#({ : ( ) ( , ),0 })
2

r
i m i ir g f x B x r n N n	

� � � � .
 

Let  

2{ : ( ) ( , ),0 }
2

r
i i m iA r g f x B x r n N	
� � � �  
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2{ : ( ) ( , ),0 }r
i i iB r g f x B x r n N	� � � � . 

Suppose ir A� . Then,  

( ( ), )
2

r
i md g f x x 	� � .                                     (2)

 

By equation (1), we can get that  

( ( ), ( ))
2

r r
i m id g f x g f x 	� � .                               (3) 

According to equation (2) and (3), 

( ( ), ) ( ( ), ( )) ( ( ), )r r r r
i i i m i md g f x x d g f x g f x d g f x x 	� � ��  � . 

Hence ir B� . Thus we have that 

2#({ : ( ) ( , ),0 })l
i i il g f x B x l n N n	� � � 
 . 

So ( )Gx QW f� .  
Theorem2.3 Let ( , )Y d � be a compact G-metric space and :f X X� be 

equicontinuous. Let 1{ }n nf �
� be G-strongly uniform converge to the map f 

and ( )k G nx QW f� .  If lim kk
x x

��
� , then ( )Gx QW f� . 

Proof: According to Lemma 2.1, for any 0	 
 there exists
10

3

	�� � such 

that 1 2 1( , )d z z �� implies 

( , )
3

d gx gy 	� � for any g G� .                                   (4) 

Since f is equicontinuous, for above 1 0� 
 , let 2 10 � �� � . If 1 2 2( , )d z z �� �  then, 
 

1 2 1( ( ), ( ))l ld f z f z �� �
 
for any 0l � .                            (5) 

According to lim kk
x x

��
� , for above 2 0� 
 there exists 0m
 such that 

2( , )md x x �� � .                                     (6) 

By Lemma 2.2, we can get that 
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( )m Gx QW f� .
 

Hence for the above 0
3

	

 there exists 0q 
 and nonnegative increasing integer 

sequence{ }in such that there exists ig G� satisfying 

#({ : ( ) ( , ),0 })
3

r
i m m i ir g f x B x r n q n	

� � � � .
 

Let  

{ : ( ) ( , ),0 }
3

r
i i m m iA r g f x B x r n q	
� � � �  

{ : ( ) ( , ),0 }r
i i iB r g f x B x r n q	� � � � . 

Suppose ir A� . Then we have that  

( ( ), )
3

r
i m md g f x x 	� � .                             (7) 

According to equations (4)-(6),  

( ( ), ( ))
3

r r
i m id g f x g f x 	� � .                      (8) 

By equations (6)-(8), we can obtain 

( ( ), )r
id g f x x� �  

( ( ), ( )) ( ( ), , )) (r r r
i i m i m mmd g f x g f x d g f x x d x x�� � 

2
3 3

	 	 � 	�   � . 

So
inr B� . Thus for any 0i � , we can get that  

#({ : ( ) ( , ),0 })l
i i il g f x B x l n q n	� � � � . 

So ( )Gx QW f� . 

Theorem 2.4 Let ( , )X d be a compact G�metric space and f be equicontinuous 

from X to X . If 1{ }n nf �
� is G-strong uniform converge to f , then we have  

limsup ( ) ( )G n GQW f QW f�
. 
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Proof: According to Lemma2.1, for any 0	 
 there exists
10

4

	�� � such 

that
1 2 1( , )d z z �� implies 

1 2( , )
4

d gz gz 	
� for any g G� .                                   (9) 

Since f is equicontinuous, for the above 1 0� 
 , let 2 10 � �� � . If 1 2 2( , )d z z ��  then,
 

1 2 1( ( ), ( ))n nd f z f z �� for any 0n � .                          (10) 

Since
1{ }n nf �
� are G-strongly uniform converge to f , for the above 0	 
 there exist 

a positive integer 1N N� such that 1n N� implies 

( ( ), ( ))
4

l l
nd pf x sf x 	

� for any x X� , ,p s G� , l N� .            (11) 

Suppose limsup ( )G nz QW f� . Then there exists positive integer 1m N
 such that  

( ) ( , )G mQW f B z � ��( , )( ) � . 

Let 

2( ) ( , )G my QW f B z �� 2( , )2(( . 

According to ( )G my QW f� , for above 0
4

	

 there exists 0q 
 and 0{ }i in �

� such that 

for any 0i � there exists ig G� such that 

#({ : ( ) ( , ),0 })
4

r
i m i ir g f y B y r n q n	

� � � � . 

Let  

{ : ( ) ( , ),0 }
4

r
i i m iA r g f y B y r n q	
� � � �  

{ : ( ) ( , ),0 }r
i i iB r g f z B z r n q	� � � � . 

Suppose ir A� . Then we have that  
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( ( ), )
4

r
i md g f y y 	

� .                                       (12)  

According to 2( , )y B z �� and (9), (10), we get that 

( ( ), ( ))
4

r r
i id g f y g f z 	

� .                                (13) 

By equation (11), then, 

( )( ( ), )
4

r
i

r
i mg f yd g f y 	

� .                               (14)        

By equations (12)-(14), we can get that 

( ( ), )r
id g f z z �

 

( ( ), ( )) ( ( ), )( )r r r
i i

r
i mid g f z g f y d g ff y yg  ( ( ), ) ( , )r

i md g f y y d y z  

4 4 4

	 	 	 � 	�    � . 

Thus ir B� . Hence for any 0i � we have that 

#({ : ( ) ( , ),0 })r
i i ir g f z B z r n q n	� � � �  

So 

( )Gz QW f� . 

Hence we have  

limsup ( ) ( )G n GQW f QW f� . 

This completes the proof. 

3. Conclusion 

We study topological structure of ( )GQW f  in metric G-space. The results obtained 

generalize the corresponding conclusions and make up for the lack of theory under G-
strongly uniform convergence. In addition, it provides a theoretical basis for its 

application in real life. 
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