The Research of G-Almost Periodic Point

Caixia BEI^a and Zhanjiang JI^{b,1}

^a Wuzhou Vocational College, Wuzhou, Guangxi 543002, P. R. China ^b Wuzhou University, Wuzhou, Guangxi 543002, P. R. China

Abstract: Firstly, it is introduced that the concepts of G-almost periodic point and G-sequence shadowing property. Then, we discuss the dynamical relationship between sequence map $\{g_k\}_{k=1}^\infty$ and limit map g under G-strongly uniform convergence of topological group action. We can get that (1) Let sequence map $\{g_k\}_{k=1}^{\infty}$ be G-strongly uniform converge to the map g where g is equicontinuous and the point sequence $\{y_k\}_{k=1}^{\infty}$ be the G-almost periodic point of sequence map $\{g_k\}_{k=1}^{\infty}$. If $\lim_{k \to \infty} y_k = y$, then the point y is an G-almost periodic point of the map g; (2) If sequence map $\{g_k\}_{k=1}^\infty$ are G-strongly uniform g where g is equicontinuous, converge to the map then $\limsup AP_G(g_k) \subset AP_G(g)$; (3) Let sequence map $\{g_k\}_{k=1}^{\infty}$ be G-strongly uniform converge to the map g . If every map g_k has G-fine sequence shadowing property, the map g has G-sequence shadowing property. These results generalize the corresponding results given in Ji and Zhang [1] and make up for the lack of theory under G-strongly uniform convergence of group action.

Keywords. Metric G-space, G-strongly uniform, G-sequence shadowing property, G-almost periodic point

1. Introduction

Strongly uniform convergence is an important concept in topological dynamical system and an important tool for us to study sequence function $\{f_n\}_{n=1}^{\infty}$ and limit function f. The research results of strongly uniform convergence are shown in [1-15]. For example, Ji and Zhang [1] proved that if sequence map $\{f_n\}_{n=1}^{\infty}$ is strongly uniform converge to the map f where f is equicontinuous, then limsup $AP(f_n) \subset AP(f)$; Deng and Jin [2] showed that the sequence function $\{f_n\}_{n=1}^{\infty}$ are asymptotically periodic implies its limit function f is asymptotically periodic.

This paper discuss the dynamical property of G- almost periodic point set and G-sequence tracking property in metric G-space. Then, we can get these results.

¹ Zhanjiang Ji, Corresponding author, Wuzhou University, Wuzhou, Guangxi 543002, P. R. China; Email: jizhanjiang1985@126.com.

Theorem2.3 Let Y be compact G- metric space, sequence map $\{f_n\}_{n=1}^{\infty}$ be G-strongly uniform converge to f where f is equicontinuous and the point sequence $\{x_k\}_{k=1}^{\infty}$ be the G-almost periodic point of $\{f_n\}_{n=1}^{\infty}$. If $\lim_{k\to\infty} x_k = x$, then we have $x \in AP_G(f)$

Theorem 2.4 Let Y be compact G-metric space. If $\{f_n\}_{n=1}^{\infty}$ is G-strongly uniform converge to the map f where f is equicontinuous, then we can obtain $\limsup AP_G(f_n) \subset AP_G(f)$.

Theorem 3.1 Let Y be compact G- metric space and $\{f_n\}_{n=1}^{\infty}$ be G- strongly uniform converge to f. Then, for any $n \ge 1$, f_n has G- fine sequence shadowing property implies f has G-sequence shadowing property.

Now we will give the proof of the above theorem in sections 2 and 3.

2. G-Almost Periodic Point Set

The definition of equicontinuous can be found in [1]. The concept of G-Strongly uniform converge is seen in [15]. The concept of metric G-space can be found in [16]. The definition of G-almost periodic point set is seen in [17].

Lemma2.1 (see[18]) Let (Y, d') be metric G- space and G be a compact topological group. Then for all $\eta > 0$, there exists $0 < \delta' < \eta$ satisfying $d'(u,v) < \delta'$ implies

$$d'(su, sv) < \eta$$
 for all $s \in G$.

Lemma2.2 Let (Y, d') be metric G- space and $\{g_k\}_{k=1}^{\infty}$ be G- strongly uniform converge to g. If y is an G-almost periodic point of every map g_k , then we have $y \in AP_G(g)$.

Proof: Since sequence map $\{g_k\}_{k=1}^{\infty}$ are G-strongly uniform converge to the map g, for any $\eta > 0$ there exist $N_1 > 0$ such that $n \ge N_1$ implies

$$d'(pg_n^{l}(x), sg^{l}(x)) < \frac{\eta}{2} \text{ for any } x \in X, \, p, s \in G \text{ and } l \ge 0$$

$$(1)$$

Let $m \in N_+$ satisfying $m \ge N_1$. Then, we can get

$$y \in AP_G(g_m)$$
.

Hence for above $\frac{\eta}{2} > 0$, there exists $N_2 > 0$ such that for any l > 0 there exists $r' \in (l, l + N_2]$ and $s_l \in G$ satisfying

$$d'(s_l g_m^{r'}(y), y) < \frac{\eta}{2}$$

By equation (1), we can get

$$d'(s_l g_m^{r'}(y), s_l g^{r'}(y)) < \frac{\eta}{2}$$

Then, we have

$$d'(s_{l}g^{r'}(y), y) < d'(s_{l}g^{r'}(y), s_{l}g^{r'}(y)) + d'(s_{l}g^{r'}(y), y)$$
$$< \frac{\eta}{2} + \frac{\eta}{2} < \eta$$

Hence $y \in AP_G(g)$.

Theorem2.3 Let (X, d') be compact G- metric space, $\{f_n\}_{n=1}^{\infty}$ be G- strongly uniform converge to the map f where f is equicontinuous and $\{x_k\}_{k=1}^{\infty}$ be the G-almost periodic point of $\{f_n\}_{n=1}^{\infty}$. If $\lim_{k \to \infty} x_k = x$, then x is an G-almost periodic point of f.

Proof: According to Lemma 2.1, for all $\eta > 0$ there exists $0 < \delta_1 < \frac{\varepsilon}{3}$ such that when $d'(z_1, z_2) < \delta_1$, we have

$$d'(gz_1, gz_2) < \frac{\eta}{3} \text{ for all } g \in G.$$
(2)

Since f is equicontinuous, for the above $\delta_1 > 0$ there exists $0 < \delta_2 < \delta_1$ such that for any nonnegative integer $l \ge 0$, $d'(z_1, z_2) < \delta_2$ implies

$$d'(f'(z_1), f'(z_2)) < \delta_1.$$
(3)

According to $\lim_{k\to\infty} x_k = x$, for above $\delta_2 > 0$ there exists k > 0 satisfying

$$d'(x_k, x) < \delta_2. \tag{4}$$

By Lemma2.2, we can obtain

$$x_k \in AP_G(f)$$

Then for above $\frac{\eta}{3} > 0$, there exists m' > 0 such that for any l > 0 there exists $r' \in (l, l+m]$ and $s_l \in G$ satisfying

$$d'(s_l f^{r'}(x_k), x_k) < \frac{\eta}{3}.$$
 (5)

By equations (2)-(4), we can obtain

$$d'(s_l f^{r'}(x_k), s_l f^{r'}(x)) < \frac{\eta}{3}$$
(6)

By equations (4)(5)(6), we can get

$$d'(s_l f^{r'}(x), x) < d'(s_l f^{r'}(x), s_l f^{r'}(x_k)) + d'(s_l f^{r'}(x_k), x_k) + d'(x_k, x) < \eta.$$

So $x \in Ap_G(f)$.

Theorem2.4 Let (Y, d') be compact G-metric space. If $\{f_n\}_{n=1}^{\infty}$ is G-strongly uniform converge to the map f where f is equicontinuous, then,

$$\limsup AP_G(f_n) \subset AP_G(f)$$

Proof: According to Lemma2.1, for all $\eta > 0$ there exists $0 < \delta_1 < \frac{\eta}{4}$ such that when $d'(z_1, z_2) < \delta_1$, we have that

$$d'(gz_1, gz_2) < \frac{\eta}{4} \text{ for any } g \in G.$$
⁽⁷⁾

Since f is equicontinuous, for the above $\delta_1 > 0$ there exists $0 < \delta_2 < \delta_1$ such that for any $l \ge 0$, $d(z_1, z_2) < \delta_2$ implies

$$d'(f'(z_1), f'(z_2)) < \delta_1.$$
(8)

Since $\{f_n\}_{n=1}^{\infty}$ are G-strongly uniform converge to the map f, for given $\eta > 0$ there exist $N_1 > 0$ such that $n \ge N_1$ implies

$$d'(pf_n^l(y), sf^l(y)) < \frac{\eta}{4} \text{ for any } y \in X, \, p, s \in G \text{ and any } l \ge 0$$
(9)

Suppose $z \in \limsup AP_G(f_n)$. Then there exists positive integer $m > N_1$ such that

$$AP_G(f_m) \cap B(z, \delta_2) \neq \emptyset$$

Let $y \in AP(f_m) \bigcap B(z, \delta_2)$. According to $y \in AP_G(f_m)$, for the above $\frac{\eta}{4} > 0$ there exists $N_2 > 0$ such that for any l > 0 there exists $r' \in (l, l + N_2]$ and $s_l \in G$ such that

$$d'(s_l f_m^{r'}(y), y) < \frac{\eta}{4}$$
(10)

According to $y \in B(z, \delta_2)$ and equations (7)-(8), we have

$$d'(s_l f^{r'}(y), s_l f^{r'}(z)) < \frac{\eta}{4}$$
(11)

By equation (9), we can get

$$d'(s_l f_m^{r'}(y), s_l f^{r'}(y)) < \frac{\eta}{4}.$$
 (12)

According to triangle inequality and equations (10)-(12), we have

$$d(s_{l}f^{r'}(z),z) < d(s_{l}f^{r'}(z),s_{l}f^{r'}(y)) + d(s_{l}f^{r'}(y),s_{l}f_{m}^{r'}(y)) + d(s_{l}f_{m}^{r'}(y),y) + d(y,z) < \eta$$

So $z \in AP_G(f)$. Hence, $\limsup AP_G(f_n) \subset AP_G(f)$.

3. G-sequence Shadowing Property

The concept of G-sequence shadowing property and G-fine sequence shadowing property can be found in [19].

Theorem 3.1 Let (Y, d') be compact *G*- metric space and $\{f_n\}_{n=1}^{\infty}$ be *G*- strongly uniform converge to *f*. Then, for any $n \ge 1$, f_n has *G*- fine sequence shadowing property implies *f* has *G*-sequence shadowing property.

Proof: For any $\varepsilon > 0$, let $0 < \delta < \frac{\varepsilon}{3}$. Suppose that $\{x_i\}_{i \ge 0}$ is (G, δ) – pseudo orbit of f. Then, for all $j \ge 0$, there exists $g_j \in G$ satisfying

$$d'(g_j f(x_j), x_{j+1}) < \delta \tag{14}$$

Since $\{f_n\}_{n=1}^{\infty}$ are G- strongly uniform converge to the map f, for given $\frac{\varepsilon}{3} > 0$ there exist a positive integer N_1 such that $n \ge N_1$ implies

$$d(pf_n^{l}(y), sf^{l}(y)) < \frac{\varepsilon}{3} \text{ for any } y \in X, \, p, s \in G \text{ and } l \in N_+$$
(15)

Let $m \in N_+$ satisfying $m \ge N_1$. By (15), we can get that

$$d'(g_j f_m(x_j), g_j f(x_j)) < \frac{\varepsilon}{3}$$
(16)

By (14) and (16), When $j \ge 0$, we can get that

$$d'(g_j f_m(x_j), x_{j+1}) < \frac{2\varepsilon}{3}$$

So $\{x_j\}_{j\geq 0}$ are $(G, \frac{2\varepsilon}{3})$ – pseudo orbit of f_m . Hence there exists $y \in Y$, $t_j \in G$ and nonnegative increasing integer sequence $\{n_j\}_{j=0}^{\infty}$ such that $j \geq 0$ implies

$$d'(f_m^{n_j}(y),t_jx_{n_j}) < \frac{2\varepsilon}{3}$$

By equation (15), when p = s = e, we have

$$d'(f_m^{n_j}(y), f^{n_j}(y)) < \frac{\varepsilon}{3}$$

Hence for all $j \ge 0$, we can obtain that

$$d(f^{n_j}(y),t_jx_{n_j}) < \varepsilon$$

So the map f has G-sequence shadowing property.

4. Conclusion

In this paper, the dynamical property of G-almost periodic points and G-sequence shadowing property is discussed under G- strong uniform convergence in metric G-space. The obtained results generalize the corresponding conclusions given in Ji and Zhang [1] and make up for the lack of theory under G-strongly uniform convergence of group action. It provides a theoretical basis for its application in real life.

Acknowledgement

This research was partially supported by the NSF of Guangxi Province (2020JJA110021) and construction project of Wuzhou University of China (2020B007).

References

- Ji ZJ, Zhang GR. Dynamical properties of almost periodic point and pointwise periodic shadowing property under strongly uniform convergence. Journal of Northeast Normal University (Natural Science Edition). 2020 Jun; 52(2): 30-34.
- [2] Deng XX, Jin YG. On strongly uniform convergence of stability and chaotic properties. Journal of Southwest China Normal University (Natural Science Edition). 2014 Feb; 39(2):31–34.
- [3] Chauhan TK, Jindal V. Strong Whitney and strong uniform convergences on a bornology. Journal of Mathematical Analysis and Applications. 2021 Aug; 505(1): 1-16.
- [4] Beer G, Garrido MI, Meroño AS. Uniform continuity and a new bornology for a metric space. Set-Valued Var Anal. 2018 Jun; 26: 49–65.
- [5] Bandyopadhyay A, Janson S, Thacker D. Strong Convergence of Infinite Color Balanced Urns Under Uniform Ergodicity. Journal of Applied Probability. 2020 Sep; 57(3): 853-865
- [6] Guo HJ, Kou JK. Strong Uniform Convergence Rates of Wavelet Density Estimators with Size-Biased Data. Journal of Function Spaces. 2019 Mar; 2019: 1-6.
- [7] Chilin V, Litvinov S. Almost uniform and strong convergences in ergodic theorems for symmetric spaces. Acta Mathematica Hungarica. 2019 Sep; 157(1): 229-253
- [8] Agbokou K, Gneyou K E. On the strong convergence of the hazard rate and its maximum risk point estimators in presence of censorship and functional explanatory covariate. Afrika Statistika. 2017 Jun; 12(3): 1397-1416.
- [9] Cao JL, Tomita AH. Bornologies, topological games and function spaces. Topology and its Applications. 2015 Apr; 184: 16-28.
- [10] Luo F, Jin YG. The condition of strong uniform convergence of relationship between sequence system and limit system. Journal of Chongqing Normal University (Natural Science). 2015 May; 32(4): 78–80.
- [11] Luo F, Jin YG, Bai DY. Set-valued Devaney chaos under the condition of strong uniform convergence. Journal of Southwest University (Natural Science Edition). 2015 Feb; 37(2): 79-83.
- [12] Xaing WJ, Jin YG. Li-Yorke Chaos and distributed Chaos under strongly uniform convergence. Journal of Chongqing Normal University (Natural Science). 2018 Mar; 35(2): 93–97.

- [13] Ruchi D, Tarun D. Topological transitivity of uniform limit functions on G-spaces. Int Journal of Math Analysis. 2012 Dec; 30(6): 1491–1499.
- [14] Yang ZX, Yin JD. Uniform convergence of mapping and sensitivity. Journal of Nanchang University (Engineering & Technology). 2013 Dec; 35(4): 385–391.
- [15] Ji ZJ. The research of mixing property under the condition of strong uniform convergence in metric Gspaces. Mathematics in Practice and Theory. 2018 Jun; 48(11): 237–240.
- [16] Ahmadi SA. Invariants of topological G-conjugacy on G-Spaces. Mathematica Moravica. 2014 Jan; 18(2): 67-75.
- [17] Ji ZJ. G-Expansibility and G-Almost Periodic Point under Topological Group Action. Mathematical Problems in Engineering. 2021 Nov; 2021: 1-6.
- [18] Choi T, Kim J. Decomposition theorem on G-spaces. Osaka J. Math. 2009 Jan; 46(1): 87-104.
- [19] Ji ZJ. The G-sequence shadowing property and G-equicontinuity of the inverse limit spaces under group action. Open Mathematics. 2021 Aug; 19: 1–9.