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Abstract. Cruciform specimens are one of the most common used to measure the 
plane mechanical properties of materials. Two significant difficulties in designing 

cross specimens are reducing stress concentration at the intersection of cross arms 

and improving stress/strain uniformity in the gauge area. The shape of the border 
at the intersection of the cruciform specimen is tightly related to the above two. 

Due to the lack of guidelines for the design of cruciform specimens, optimizing the 

cruciform specimen border intersection is an urgent problem to be solved to 
increase the reliability of test results. By employing the finite element method and 

the shape optimization method, the boundary of the cruciform specimen is 

optimized, and the mathematical expression of the shape function at the 
intersection of the cruciform specimen's boundary is obtained. Furthermore, 

experiments are used to validate the optimum border. The findings indicated that 

the stress concentration at the improved specimen's boundary was reduced. The 
optimal shape of the cruciform specimen's boundary intersection described in this 

study can be used as a reference for the structural design of the cruciform 

specimen and can be used for extensive strain testing of the cruciform specimen. 

Keywords. Cruciform specimen stress concentration, optimal shape, in-plane 
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1. Introduction 

Multiaxial testing of material is essential for confirming the theory of multiaxial 

strength. The reliability of material multiaxial test results determines the reliability of 

the material strength theory. The in-plane biaxial test is an effective method for 

determining a material's in-plane mechanical properties. The structural form of the 

cruciform specimen is directly related to the in-plane test results. Due to the lack of 

design standards for cruciform specimens, there is no agreement on the structural form 

of these specimens, which results in a wide variety of material test results [1]. Our goal 

is to develop high-precision in-plane biaxial testing equipment and optimize the 
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structure of cruciform specimens in order to improve the theory and practice of in-

plane biaxial testing.  

The in-plane biaxial test results highly depend on the cruciform specimen's 

structure. The stress concentration at the crossarm intersection of the cruciform 

specimen causes failure to occur before the gauge zone, limiting the in-plane biaxial 

large strain test [2]. Due to the distinctive cross structure of the cross-shaped specimen, 

the stress/strain concentration at the intersection of the cross arms is unavoidable. The 

stress concentration at the boundary intersection of the cross shaped specimen and the 

stress / strain uniformity in the gauge area are very sensitive to the mechanism 

parameters of the cross shaped specimen [3]. Even for the same material, the test 

results of different specimens will have large deviations. In order to obtain reliable 

biaxial test results of materials, advanced optimization technology is required to 

optimize the structure of the cruciform specimen. 

Utilizing a finite element approach to carry out the structural design of cruciform 

specimens is an efficient process [4, 5]. The structural optimization design of cruciform 

specimens by finite element method has yielded fruitful results based on the parameter 

optimization method: the stress concentration factor at the intersection of cross arms 

has been reduced; the uniformity of stress/strain in the gauge area has been effectively 

improved [6, 7]. However, because the parameter optimization method cannot change 

the geometric dimensions' force transmission properties, the result is simply a locally 

optimal solution based on the optimized geometric features [8]. The likelihood of 

reaching the optimal global solution can be raised by optimizing the structural 

dimensions of cruciform specimens using nonparametric approaches to break through 

the restriction of geometric parameters on the structure of cruciform specimens.  

Optimizing the boundary of the crossarm intersection of the cruciform specimen is 

necessary to improve the method and theory of the in-plane biaxial test. Using the finite 

element method and the shape optimization algorithm, we optimize the shape of the 

crossarm intersection of the cruciform specimen and derive the mathematical 

expression of the boundary shape to reduce the stress concentration at the crossarm 

intersection. Experiments validate the optimized border. The results of simulations and 

experiment showed that the stress/strain distribution at the junction of strain boundaries 

can be significantly improved with the shape-optimized boundary. The method 

presented in this research could serve as a reference for the design of cruciform 

specimen and be used to perform a in-plane biaxial extensive strain test.  

2. Methods and Experiments 

To reduce stress concentration at the crossarm junction, we first optimize the shape of 

the crossarm intersection using the finite element approach and shape optimization 

algorithm and then use curve fitting technology to obtain the mathematical expression 

of the crossarm intersection. Furthermore, an MTS plane biaxial testing equipment was 

used to test the optimized cruciform specimen.  

2.1. Shape Optimization 

The center reduced cruciform specimen is used in the original specimen, as shown in 

figure 1. The original specimen's length, width, and thickness are 220 mm, 220 mm, 

and 5 mm. The fillet at the cross arms junction is 10 mm; the specimen clamping 

J. Chen and J. Zhang / Optimal Boundary Shape of the Center-Reduced Cruciform Specimen 401



position's length, width, and thickness are 40 mm, 40 mm, and 5 mm, respectively. The 

reduced area is in the center with 35 mm length and width and 1.5 mm rounded corners.  

The quarter model was used to optimize the cruciform specimen's border. Figure 2 

depicts the shape optimization model's finite element model. The model is organized 

into three components in figure 2: clamping area, gauge area, and design area. For 

modeling the equal tension, we rigidly coupled reference points RP1 and RP2 with the 

clamping area and simultaneously displaced RP1 and RP2 by 0.05 mm each.  

 

Figure 1. Original Specimen. 

According to figure 2, the finite element model is established. Q460, high-strength 

steel, is the material used for the finite element simulation. Its elastic model, yield 

strength, and Poisson's ratio are 210GPa, 460MPa, and 0.3. The finite element model 

comprises 28517 nodes and 22936 elements of C3D8R.  

RP1

RP2

 

Figure 2. Shape Optimization.  
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We establish the optimization parameters area, objectives, and constraints. 

Additionally, the following modifications were made: Freeze the clamping end 

elements and orient the Z-axis in the direction of element removal.  

The following is the objective of topology optimization: 

min{ e e( , )E u��  }                                        (1) 

where         

E—The strain energy of each element in the design area; 

ρe—The reduction factor of the material density of each element in the design area; 

μe—The displacement of each element in the design area. 

The following are the constraints of topology optimization: 

1

n

e e initial
e

V� � �
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�� , 0 1e�� �                                        (2) 

where   

νe    —The volume of each element in the design area; 

α   —The friction coefficient of the design area's initial volume; 

Vinitial—The displacement of each element in the design area. 

2.2. Experimental Validation 

We use an MTS biaxial test system to validate the strain distribution at the optimized 

specimen's crossarm intersection.  

Table 1 lists the equipment parameters of the MTS biaxial test system. 

Table 1. Technical parameters of equipment of MTS biaxial test system.  

Load(kN) Travel(mm) 
Collet 
spacing(mm) 

Flat collet(mm) Temperature 
range 

Frequency 
range(Hz) Length Width Thick 

±100 ±100  100-300 60 45 0-7 -70- 310 0-20 

The apparatus allows for in-plane biaxial tension, compression, torsion, and high 

and low temperature testing. Figure 3 depicts the cruciform specimens of the original 

specimen and the shape-optimized specimen. After the specimen was clamped, a force 

of 30kN is applied in both the horizontal and vertical directions, and the strain during 

the tensile test is measured by DIC equipment (table 2).  

The strain distribution of the cruciform specimen at the intersection of the 

crossarms can be collected by digital image correlation (DIC) (table 2). 
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Figure 3. MTS Biaxial Test System. 

Table 2. Technical parameters of equipment of DIC. 

Items Technical parameters 

Measuring range (mm) 10*8 to 5000*4150 
Camera type CCD 

Maximum acquisition rate 15Hz 

Time of exposure 0.1ms to 2s 
Strain measurement range 0.02% to >100% 

Strain accuracy 0.01% 

Measurement result 2D or 3D displacement, strain, and construction profile 

3. Results 

Based on the results of finite element simulation and experimental verification, this 

section explained how optimizing the boundary at the crossarm intersection, with the 

fitted boundary, can effectively reduce the stress concentration at the crossarm 

intersection.  

3.1. Finite Element Simulation Results 

Under the same displacement boundary conditions, the original specimen exhibits 

severe stress concentration at the crossarm intersection, whereas the optimized 

specimen exhibits uniform stress distribution along the crossarm intersection boundary. 

The maximum von Mises stress at the specimen's crossarm intersection decreased from 

330MPa to 249MPa after shape optimization (figure 4). 
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Max von Mises 330MPa

 

Max von Mises 249MPa

 

(a) Unoptimizied specimen (b) Shape-optimized specimen 

Figure 4. Stress distribution at crossarm intersection before and after shape optimization 

3.2. Mathematical Expression of Boundary 

According to the optimized shape in figure 4 (b), we finally decide to use Equation (3) 

to fit the boundary shape. 

1/( ) cy a bx �� 	                                                         (3) 

The parameters a, b and c in equation (3) are solved by using 31 points along the 

shape-optimized curve. The solution results are shown in table 3. The coefficient of 

determination reach 0.99. 

Table 3. Fitting parameters. 

 Value Std Err Range (95% confidence) DOF 

a -0.000061 0.000028 -0.000119 to -0.000003 31 

b -0.00004 0.000002 -0.000007 to -0.000000 31 

c 3.101030 0.151790 2.783329 to 3.418730 31 

3.3. Experimental Verification 

In the original specimen, there is a severe strain concentration at the crossarm 

intersection, while the strain concentration at the crossarm intersection of the optimized 

specimen has been drastically reduced. Although the strain distribution deviates from 

the ideal state due to the test equipment's deviations in loading coaxiality, the uniform 

strain distribution (figure 5(b)) corresponds to the uniform stress distribution (figure 4 

(b)) at the intersection of cross arms.  
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(a) Original specimen  (b) Shape-optimized specimen 

Figure 5. Strain distribution at crossarm intersection before and after shape optimization. 

4. Discussion 

We found that the shape optimization algorithm based on the finite element method 

could effectively reduce the concentration of stress/strain at the intersection of the 

crossarms. The mathematical expression of the boundary shape at the crossarm 

intersection accurately could express the optimized boundary shape. The finite element 

simulation results demonstrated that the optimized specimen could effectively improve 

the stress distribution at the crossarm intersection; The experimental results 

demonstrated that the optimized specimen could effectively improve the strain 

distribution at the cross arm of the cruciform specimen; The coefficient of 

determination between the optimized shape's boundary and the mathematical 

expression reach 0.99. As a consequence, the finite element method is effective for 

improving the cross-arm intersection shape of the cruciform specimen.  

In comparison to the optimization of cruciform specimens based on parameter 

optimization, the shape optimization algorithm could optimize the boundary of 

cruciform specimens more effectively since the boundary breaks through the 

constraints of geometric features during the optimization process. Therefore, the 

nonparametric optimization algorithm could optimize the boundary form of the 

intersection of the cruciform specimen's cross arms more effectively.  

The cruciform specimen's stress concentration at the crossarm intersection is 

primarily influenced by its geometric structure. Therefore, although Q460, an isotropic 

material, was used in the simulation and test, it also applies to anisotropic materials. 

Although this paper focuses solely on the geometry involved in the optimization 

process, the mathematical expression of boundary form can be applied to other 

cruciform specimens. The cruciform specimen optimized for isometric tension can also 

achieve excellent results under varying load ratios (optimization under different load 

ratios can obtain optimal boundary form under specific load ratios).  

To improve the stress concentration at the crossarm intersection of the cruciform 

specimen, the cruciform specimen's boundary is optimized using shape optimization 

based on the finite element method, and the mathematical expression of the optimized 

boundary is obtained. The numerical and experimental results indicate that the 

optimized specimen boundary can significantly enhance the stress/strain distribution of 

the cruciform specimen and decrease the stress concentration in the cross-arm 
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transition region. This paper proposes an optimization method that can effectively 

improve the stress concentration at the intersection of the cruciform specimen's cross 

arms. It provides a reference for the structural design of the boundary shape of the 

cruciform specimen and a method for measuring large strain in the plane biaxial test.  

5. Conclusion 

An optimization method using the finite element method and shape optimization 

technology was developed to optimize the intersection boundary of cruciform specimen. 

The method can be used to effectively distribute the stresses and strains at the boundary 

intersections of cruciform specimens and reduce the stress concentrations at the 

crossarm intersections. Unlike the parametric optimization method, the nonparametric 

optimization method is employed to circumvent the restrictions of geometric feature 

parameters and locate the most optimal global solution in a plane curve. The optimized 

boundary is expressed by a mathematical function based on curve fitting technology, 

which can be used as a reference for the structural design of cruciform specimens. 
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