Enhancement Mechanical Properties of B₄C Ceramics with the Core-Shell Structure Powders

Wankai YAO^a, Junbin YAN^b, Xiangcheng LI^{a,1}, Pingan CHEN^a and Boquan Zhu^a ^aThe State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, China ^bWuhan Xinxin Semiconductor Manufacturing Co., Ltd, Wuhan, China

Abstract. In order to improve the mechanical properties of B_4C ceramics, $B_4C@TiB_2$ composite powders with core-shell structure are prepared by molten salt method using B_4C and Ti powders as raw materials. And B_4C ceramics were prepared from $B_4C@TiB_2$ composite powders by spark plasma sintering (SPS). The results show that the $B_4C@TiB_2$ composite powders improves the mass transfer during spark plasma sintering. When the molar ratio of B_4C/Ti is 2/1, the relative density, Vickers hardness, fracture toughness and flexural strength of the BT1/2 sample are 94.2%, 26.9 GPa, 5.34 MPa m^{1/2} and 570 MPa, respectively, which is best comprehensive properties.

Keywords. Core-shell structure, boron carbide (B_4C) ceramics, spark plasma sintering (SPS), reinforcing and toughing

1. Introduction

Boron carbide (B₄C) ceramics have high melting point, ultrahigh hardness, high elastic modulus, low specific density, good wear resistance as well as excellent high temperature and chemical stability [1]. Therefore, the B₄C ceramics can be widely used in bulletproof materials, refractory materials, wear-resistant materials, self-lubricating materials, especially acid-resistant materials, cutting and grinding tools, atomic reactor control and shielding materials, etc [2]. However, the sintering performance of pure boron carbide is poor, which the sintering temperatures of B₄C ceramics for densification are almost higher than 2000 °C. In addition, the low fracture toughness of B₄C ceramics limits their further application [3].

The addition of second phase can effectively improve the strength and toughness of the B_4C ceramics. Among them, titanium boride (TiB₂) with ultrahigh hardness and high melting point has attracted much attention of many researchers [4, 5]. The hardness of TiB₂ can reach 25~32 GPa, which is higher than that of other transition metal diborides such as ZrB₂(22.1 GPa) and HfB₂ [6]. Therefore, TiB₂ as the second phase in the B₄C ceramic helps to maintain the high hardness as well as improving the sintering behavior [7]. At the same time, TiB₂ has a lower density (4.52 g/cm³) than

¹ Xiangcheng Li, Corresponding author, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, China; E-mail: lixiangcheng@wust.edu.cn.

other transition metal diborides such as ZrB_2 (6.09 g/cm³) and HfB₂ (10.5 g/cm³) [8, 9]. In addition, TiB₂ has a higher thermal expansion coefficient than other transition metal diborides, such as ZrB_2 , TaB₂ and HfB₂. The thermal stress generated between TiB₂ and B₄C can improve the fracture toughness of B₄C ceramics [10].

In order to improve the mechanical properties of B_4C ceramics, the $B_4C@TiB_2$ composite powders are obtained by molten salt method in this paper, which the TiB_2 shell is in-situ formed on the surface of B_4C powders. Subsequently, $B_4C@TiB_2$ composite powders are sintered by SPS. The effects of different B_4C/Ti molar ratios on the microstructure and mechanical properties of B_4C ceramics are investigated.

2. Experiment

2.1. Sample Preparation

B₄C powder (20 μ m, analytically pure) and Ti powder (1~3 μ m, purity>99.9%) are used as raw materials. KCl and NaCl (analytically pure) are used as raw materials of molten salt. The raw materials are weighed according to the molar ratio of B₄C:Ti=1:1, 1:1/2, 1:1/4, 1:1/6, and pure B₄C are used as the control group. The mixture is obtained according to the mass ratio of KCl:NaCl=1:1 and (KCl+NaCl):(B₄C+Ti)=5:1. This mixture is heated in a tube furnace at 1100 °C in a flowing Ar atmosphere for 4 h to form TiB₂ on the surface of B₄C powders. Then, the obtained product is wished with water and anhydrous ethanol for many times until there is no salt, and the B₄C@TiB₂ composite powders are obtained after drying. Finally, the sintering process is carried out by spark plasma sintering in a vacuum atmosphere. The maximum temperature is 1700 °C for 6 min, and a pressure of 50 MPa is applied throughout the process.

2.2. Characterizations

The phase compositions of samples are characterized by X-ray diffractometer (XRD). The microscopic morphology of the $B_4C@TiB_2$ composite powders and B_4C ceramics are analyzed using a field emission scanning electron microscope (FESEM). Bulk density is measured using the Archimedes method. Vickers hardness and fracture toughness are measured by the indentation method, using a Vickers hardness tester with an indenter made of diamond and an angle of 136° on the polished surface for 15 s under a load of 5 kg. The bending strength is measured using the three-point bending method.

3. Results and Discussions

3.1. Phase Diagram Analysis of B4C@TiB2 Composite Powders

The phase analysis of the $B_4C@TiB_2$ composite powders is carried out by XRD, and the results are shown in figure 1. It can be seen that the $B_4C@TiB_2$ composite powders are mainly composed of B_4C , TiB_2 and a small amount of TiC, and no residual Ti is detected, indicating that Ti has reacted with B_4C in the molten salt. The intensity of TiB_2 diffraction peak increases with the Ti amount, while the intensity of B_4C diffraction peak is just the opposite. The existence of the TiC diffraction peak in the BT1 sample is due to the excessive amount of Ti, and the generated TiC has not completely converted into TiB₂. In the subsequent discharge plasma sintering, the residual TiC will continue to react with B_4C to form TiB₂.

From the results of XRD, Ti and B₄C to form $B_4C@TiB_2$ composite powders with core-shell structure in the molten salt at 1100 °C. The molten salt promotes the dissolution of Ti and makes Ti exist in the form of "naked" ions, which effectively reduces the reaction barrier and temperature of the reaction between B₄C and Ti. And mass transfer in the molten salt between B₄C and Ti ensures the uniform nucleation and growth of TiB₂ on the surface of B₄C particles.

Figure 1. XRD patterns of B₄C@TiB₂ composite powders.

3.2. Microstructure of B₄C ceramics

The BSE images of B_4C ceramics are shown in figure 2. Figure 2(a) shows the polished surface of the BT0 sample, the light color phase is B_4C , and the black color represents the pores. From figure 2 (a), there are a large number of pores in the sample, indicating that the sintered compactness of pure B_4C powder is poor. It can be seen from figures 2(b)~(e) that the gray phase is B_4C , and the white phase is TiB_2 . Compared with the control group BT0, the pores are significantly reduced. It shows that the $B_4C@TiB_2$ composite powders can effectively reduce the sintering temperature of B_4C ceramics. The TiB_2 phase forms an interconnected network structure that wraps the B_4C grains in a cage-like structure, which can restrain the movement and growth of B_4C grain boundaries by pinning during the sintering process.

Figure 2. BSE image of B₄C ceramics. (a)BT0, (b)BT1/6, (c)BT1/4, (d)BT1/2, (e)BT1.

3.3. Mechanical Properties of B₄C Ceramics

The relative density and bulk density of B₄C ceramics are shown in figure 3(a). The relative density of the BT0 sample is 82.1%, while the relative density of BT1/6 sample reaches 95.4%, with an increase of 16.2%. The bulk densities of B₄C ceramics increase from 2.07 g/cm³ to 3.20 g/cm³. It indicates that the sintering performance of B₄C Ceramics can be significantly improved by coating TiB₂ on the surfaces of B₄C powders. It can be seen from figures 3(b)~(c) that B₄C ceramics prepared from B₄C@TiB₂ composite powders can effectively improve their mechanical properties. And when the molar ratio of B₄C/Ti is 2/1, the Vickers hardness, fracture toughness and flexural strength of the BT1/2 sample are 26.9 GPa, 5.34 MPa·m^{1/2} and 570 MPa, respectively, which is best comprehensive properties.

Figure 3. Mechanical properties of B_4C ceramics. (a) Relative density and bulk density, (b) Vickers hardness and fracture toughness, (c) Flexural strength.

3.4. Toughening Mechanism of B₄C Ceramics

The crack propagation of BT1/2 sample after Vickers hardness indentation is shown in figure 4. There are obvious crack deflection, crack bridging and crack branching in the B_4C ceramics. These mechanisms increase fracture toughness by consuming more of the energy required for fracture. In addition, the fracture mode of B_4C ceramics are

transformed into a hybrid mode of intergranular and transgranular fracture, which is beneficial for the improvement of fracture toughness.

Figure 4. Vickers indentation crack propagation paths of BT1/2.

4. Conclusions

In this study, the $B_4C@TiB_2$ composite powders with core-shell structure is obtained by molten salt method. The TiB₂ phase is evenly distributed on the surface of B_4C , forming a uniform and dense coating structure. The $B_4C@TiB_2$ composite powders improves the mass transfer during SPS. The TiB₂ phase could form a cage-like structure to wrap the B_4C grains hinder the growth of B_4C grains by pinning. When the molar ratio of B_4C/Ti is 2/1, the Vickers hardness, fracture toughness and flexural strength of the BT1/2 sample are 26.9 GPa, 5.34 MPa·m^{1/2} and 570 MPa, respectively, which is best comprehensive properties.

Acknowledgements

This work is supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of Hubei Province (Grant No.2020CFA038), the Key Research and Development Project of Hubei Province (Grant No. 2020BAA028).

References

- Song N, Gao Z, Zhang Y, Li X. B₄C nanoskeleton enabled, flexible lithium-sulfur batteries. Nano Energy. 2019; 58:30-9.
- [2] Reddy KM, Guo D, Song S, Cheng C, Han J, Wang X, et al. Dislocation-mediated shear amorphization in boron carbide. Sci. Adv. 2021;7(8): eabc6714.
- [3] Suri A, Subramanian C, Sonber J, Murthy TC. Synthesis and consolidation of boron carbide: A review. Int. Mater. Rev. 2010; 55(1):4-40.
- [4] Dai FZ, Xiang H, Zhou Y. Strategy to design high performance TiB₂-based materials: Strengthen grain boundaries by solid solute segregation. J. Am. Ceram. Soc. 2020; 103(5):3311-20.
- [5] Liu C, Zhang Z, Yang G, Zhou A, Wang G, Qin S, et al. Finite element analysis and wear mechanism of B₄C-TiB₂ ceramic tools in turning AISI 4340 workpieces. Ceram. Int. 2022;48(4):5459-67.
- [6] Ren D, Deng Q, Wang J, Yang J, Li Y, Shao J, et al. Synthesis and properties of conductive B₄C ceramic composites with TiB₂ grain network. J. Am. Ceram. Soc. 2018; 101(9):3780-6.

- [7] Khajehzadeh M, Ehsani N, Baharvandi HR, Abdollahi A, Bahaaddini M, Tamadon A. Thermodynamical evaluation, microstructural characterization and mechanical properties of B₄C-TiB₂ nanocomposite produced by in-situ reaction of nano-TiO₂. Ceram. Int. 2020; 46(17):26970-84.
- [8] Zhang M, Ren X, Zhang M, Wang S, Wang L, Yang Q, et al. Preparation of ZrB₂-MoSi₂ high oxygen resistant coating using nonequilibrium state powders by self-propagating high-temperature synthesis. J Adv. Ceram. 2021; 10(5):1011-24.
- [9] Zhang X, Zhang Z, Liu Y, Wang A, Tian S, Wang W, et al. High-performance B₄C-TiB₂-SiC composites with tuneable properties fabricated by reactive hot pressing. J. Eur. Ceram. Soc. 2019; 39(10):2995-3002.
- [10] Liu D, Fu Q, Chu Y. Molten salt synthesis, formation mechanism, and oxidation behavior of nanocrystalline HfB₂ powders. J. Adv. Ceram. 2020; 9(1):35-44.