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Abstract. Because of the anisotropic nature of composite materials, they can show 
different material properties in different directions. Therefore, it is decisive to 

determine the mechanical properties of composites. In this study, performance 
comparison of analytical methods and numerical methods are investigated. The most 

well-known analytical method, the strength of the material method, and the 

relatively more complex and widely used Chamis’ equations and Tsai-Halpin 
equations were selected. Numerically, the finite element-based representative 

volume element (RVE) homogenization method without periodic boundary 

conditions is chosen. As a result, the modulus of elasticity in the fiber direction and 
the major Poisson's ratio values are similar for all methods. Tsai-Halpin method and 

RVE Homogenization method can predict the transverse elasticity value close to 

each other, Chamis’ equations also provide results relatively close to these results, 
but the results obtained from the strength of material approaches are not acceptable. 

From the study, it was revealed every method can be used to identify modulus of 

elasticity in fiber direction and major Poisson’s ratio but modulus of elasticity in the 
transverse direction and shear modulus can be calculated in other methods. 
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1. Introduction 

Composites embody more than one discrete material. There are two major structural 

elements in composite materials called fiber and matrix. While the fiber is mostly 

responsible for the strength, the matrix is responsible for the bonding and integrity of the 

structure. The mechanical properties of composites not only appertain fiber and matrix 

properties but also depends on manufacturing defects. However, in this study 

manufacturing defects such as the volume of voids are not included. Our goal is to 

compare some analytic and numerical methods for predicting elastic properties. Elastic 

properties of composite materials emerge from usage materials with different 

compositions, where the discrete ingredients detain their unique characters and function 

with each other to provide appropriate mechanical properties [1]. Although, much study 

has been done to overcome these design issues [2]. The modulus of elasticity of 

composite material is linked to the understanding of its microstructural behavior [3,4]. 

Several analytical and numerical methods are usable, like Chamis’ equations [5] and the 

Tsai-Halpin approach [6]. Nevertheless, these methods are not sufficient to appraise the 
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elastic properties of composites. Hence, employing a FEM based method like 

representative volume element (RVE) is better to evaluate elastic properties [7]. RVE 

term was applied for the first time by Hill [8] and identified as the minimum volume of 

composite material which represents a sufficiently accurate model to the effective elastic 

response. Sadik L. Omairey [9] has developed an ABAQUS plugin that predicts the 

elastic properties of composite materials. Methods need to be compared to determine the 

approach that comes as close as possible to the true results. Pal [10] compared results 

that are found from the strength of materials approach, Tsai-Halpin equations, and FEA-

based RVE analysis. There are very few studies in the literature that compare the methods 

of calculating the transverse modulus of elasticity and finding the correct value. This 

study sheds light on the above problem by comparing some methods. As a result of this 

study, it was found that Tsai-Halpin and the RVE Method gave the closest values in the 

result, on the other hand, Chamis' equations provided convergence, but the strength of 

materials method did not give sufficient values. 

2. Materials and Method 

2.1. Material Properties 

The model of matrix and fiber in table 1 has the dimension of 7.42x7.42x7.42 which 

represents the width, height, and length of the RVE with a fiber fraction measurement of 

0.7. The model is designed in ABAQUS software and the C3D8R element is chosen for 

meshing. 

Table 1. Material Properties. 

Properties (GPA) Fiber (T300) Epoxy Resin 
E 230 2.8 

n12 0.2 0.3 

2.2. Analytical Methods 

The anisotropic nature of the composite materials allows these values to vary according 

to the fiber direction. Since the laminas are in plane stress, four different engineering 

constants have to be determined. These constants are E1, E2, v12, and G12. There are 

various analytical, semi-empirical, and more sophisticated models for determining these 

elastic properties of composite materials. These are the Strength of Materials approach, 

the Tsai-Halpin model, and the Chamis’ equations. While all the analytical method 

satisfies in longitudinal modulus of elasticity (E1) and major Poisson’s ratio (v12), they 

differ in transverse elastic modulus (E2) and shear modulus (G12) formulas. 

2.3. Numerical Methods 

The fundamental thought of the computational homogenization techniques is to achieve 

mechanical properties of composites by solving the boundary value problem with proper 

boundary conditions. To estimate the mechanical properties of composite numerically, a 

RVE that corresponds to a regular fiber packing arrangement is often used. The RVE 

term was used first by [8] and it can be described as minimum material volume which 

can provide an accurate macroscopic material response. Hence, the RVE should be 
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modeled so that the RVE can show accurate material response at the material response 

[11]. Typical RVE with single fiber is shown in figure 1(a). 

 

Figure 1. (a) RVE (Micro-scale), (b) Boundary Conditions of RVE. 

The composite lamina is described in classical lamination theory as a homogenous 

orthotropic material with specific effective moduli that characterize the composite’s 

typical material properties. Macro-stress and strain are calculated by averaging the stress 

and strain tensor over the volume of the RVE to describe this macroscopically 

homogenous material. 

                                         (1) 

                                          (2) 

2.4. Finite Element Analysis 

The displacement of the RVE is constrained by displacement in the x, y, and z directions 

by back faces. Boundary conditions of RVE can be seen in figure 1(b). It is fixed in the 

direction of the normal back surfaces and the other two degrees of freedom are not 

constrained. To determine the elastic properties, a load must be applied and this load is 

set to 10 depending on the directions. These loads and the elastic constants E1, E2, E3, 

G12, G23, and G13 that can be found are given below in table 2. 

Table 2. Load directions. 

Direction Load  Displacement To determine 

x    

y    

z    

yz    

xz    

xy    
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3. Result and Discussion 

Figures 2(a), (b), and (c) show the stress distribution of RVEs according to elastic 

constants. For all the analytical methods, longitudinal modulus of elasticity (E1) and 

major Poisson’s ratio; 

                                          (3) 

                                          (4) 

where Ef, Em is the elastic modulus of composite components, and Vf, Vm is the volume 

of fiber and matrix fraction respectively. 

                                                  (5) 

                                                  (6) 

where Gf, Gm is the elastic modulus of composite components. Because the strength of 

the material approach doesn’t sufficient to calculate E2 and G12. This has led to the 

development of more complex models just as the Tsai-Halpin equation. The obtained 

results from the test don’t agree well with the test results. To solution for this Tsai-Halpin 

[6] developed their model by curve fitting. E2 and G12; 

                                                       (7) 

                                                          (8) 

where x is the reinforcing factor term. It rely on loading conditions, fiber and packing 

geometry. If the lamina has circular fibers with a square arrangement  equal to 2, if it 

has hexagonal fibers,  is equal to 2(a/b). To find shear modulus; 

                                                        (9) 

  (10) 

According to [6],  to find the shear modulus of fiber consisting of circular fiber 

with a square array and  find the shear modulus of a fiber with a 

hexagonal array. On the other hand,  give satisfactory results only up to Vf = 0.55. 

To solve this [12] proposed the following equation; 
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  (11) 

Chamis proposed another model [5]. The most complex theory to evaluate E2 of the 

unidirectional laminates was derived by Hashin. Hashin’s model is very complex and 

hard to evaluate material constants. When compared with Chamis’ formula, it is found 

that the results are similar and Chamis’ formula is far simple. To find E2 and G12 

according to Chamis’ formula; 

  (12) 

  (13) 

 

Figure 2. (a) Tensile stress in the fiber direction caption, (b) Tensile stress in the transverse direction, and (c) 
Shear stress in the XZ plane. 

Table 3. Comparison of elastic constants. 

 E1 (GPa) E2 (GPa) ν12 G12 (GPa) 
Strength of Materials Approach 161.84 9.08 0.23 3.4980 

Chamis’ Equations 161.84 16.14 0.23 6.2343 
Tsai-Halpin’s Equations 161.84 20.25 0.23 8.0458 

RVE Homogenization Method 161.54 21.35 0.23 3.0159 

Using analytical methods and numerical methods, elastic constants are determined 

without periodic boundary conditions. Table 3 shows the comparison of E1 in the strength 

of the material, Tsai-Halpin equations, Chamis’ equations, and the RVE Homogenization 

method. The RVE homogenization method provides the identical result to the strength 
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of materials approach, Chamis’ equations, and Tsai-Halpin equations. For E2 values 

Tsai-Halpin equations and the RVE Homogenization method gave a good agreement. 

The reason why the strength of materials approach gave different reasons probably is 

that they do not take into account the fiber alignments, loading directions, and packing 

arrangements. Tsai-Halpin equations have a reinforcing factor ( ) that includes the effect 

of these terms. Because of this term, the Tsai-Halpin equations give more appropriate 

values than the others. For major Poisson’s ratio ( ) every method calculates the same 

values. 

4. Conclusion 

The focus of this study is to compare predicted elastic properties. According to table 3, 

elastic modulus in fiber direction (E1) and major Poisson’s ratio ( ) are consistent in all 

methods. So, methods are sufficient to determine fiber direction properties. On the other 

hand, the transverse tensile modulus (E2) values are consistent for the two methods. In 

Chamis’ equations value of E2 seems quite sufficient to predict but it is not efficient as 

Tsai-Halpin equations. Additionally, the shear modulus (G12) values are inconsistent. 

Since the values from the methods differ from each other, the calculated values should 

be correlated with the experimental data. 
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