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Abstract. Hydraulic engineering plays an important role in energy construction in 
China. As the most important water retaining structure, the deformation trend and 

safety state of dam is undoubtedly the most concerned problem in engineering. Dam 

deformation monitoring data is the most critical information to understand dam 
deformation. So, the analysis and prediction of dam deformation monitoring data is 

an important measure to master dam safety state. However, the monitoring data of 

dam generally contains noise components. In order to reduce the noise influence and 
improve the stability and accuracy of dam monitoring data. EMD-SARIMA model 

was established in this paper. The monitoring data was decomposed into several 

Intrinsic Mode Function (IMF) from high to low frequency by using Empirical 
Mode Decomposition (EMD). Then, the data was reconstructed after eliminating the 

IMF mainly containing noise based on the Continuous Mean Square Error (CMSE) 

criterion. Finally, a Seasonal Auto-Regressive Integrated Moving Average 
(SARIMA) model was established for the reconstructed data. The results show that 

EMD can effectively reduce the noise in dam monitoring data. The reconstructed 

data is more stable than the original data, and closer to the actual displacement 
process of the dam. Compared with SARIMA model, the prediction accuracy of 

EMD-SARIMA model meets the requirements, and is more accurate and less noise 

effect. It can be applied to denoise data and prediction analysis of gravity dam. 
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1. Introduction 

The main environmental factors affecting the deformation of gravity dams include aging, 

water pressure and temperature [1]. Under the action of water pressure, gravity dam will 

deform with time. This slow trend deformation is usually presented as a low frequency 

component in dam monitoring data. The water pressure factor usually has certain 

periodicity due to the regulation form of reservoir. The temperature factor usually also 

has a certain periodicity due to the alternation of seasons. Therefore, gravity dam will 

produce periodic deformation under the action of periodic factor. Periodic deformation 
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is usually presented as intermediate frequency component in dam monitoring data. 

During the data acquisition process, the monitoring data often contains certain noise 

components. This is usually due to the defects of instrument design or installation, as 

well as the interference in the signal transmission process. The noise is usually presented 

as high frequency components in dam monitoring data [2]. Feature extraction of gravity 

dam deformation monitoring data can well understand the variation trend, scope and 

cause. It is very important for guaranteed dam safety [3, 4]. However, the variation range 

of dam deformation monitoring data is small, and it is close to the high frequency noise. 

The noise will drown the real data features and affect the accuracy of monitoring data. 

In order to analyze the monitoring data more accurately and reasonably, the influence of 

high frequency noise should be reduced as much as possible. In this way, it can better 

obtain accurate and real data and to better monitor dam safety.  

At present, noise reduction methods for dam monitoring data mainly include 

Wavelet Analysis and Empirical Mode Decomposition (EMD).Wavelet analysis has 

good time-frequency local characteristics and multi-resolution analysis functions. It has 

been widely used in data noise reduction, signal analysis, image processing and other 

fields [5, 6]. Wu [7] added wavelet analysis to GM (1,1) model, and the results showed 

that wavelet threshold denoising can obviously remove the noise in original data. Li [8] 

also used wavelet analysis to denoise the dam deformation data, and then reconstructed 

the extracted comprehensive components to obtain a hybrid model to predict the dam 

deformation. However, wavelet analysis is not adaptive. The denoising effect depends 

on the threshold selected by the expert. If the threshold is too small, part of the noise may 

be retained, while if the threshold is too large, part of the useful data may be deleted. 

EMD is an adaptive decomposition method for nonlinear and non-stationary data. It was 

proposed by Huang [9]. It does not need to determine any function and can directly and 

effectively decompose the data. Compared with wavelet analysis, EMD has the 

characteristics of simple calculation, intuitive and adaptive. EMD is also widely used in 

data feature extraction and noise reduction [10, 11]. Liu [12] and Jin [13] both have 

combined EMD and some prediction methods to fit and predict dam displacement, and 

obtained good results. 

Dam deformation monitoring data is a set of one-dimensional time series. The 

Seasonal Auto-Regressive Integrated Moving Average (SARIMA) model can find the 

change characteristics, trends and development laws by analyzing the historical change 

process of a time series. SARIMA adds a seasonal difference step to the Auto-regressive 

Integrated Moving Average (ARIMA) model [14]. It is suitable for analyzing data series 

with certain tendency and periodicity, and is not limited by missing data [15, 16]. In this 

paper, EMD method is used to denoise and extract features for dam deformation data. 

Then, SARIMA is used to build a dam displacement prediction model, so as to fit and 

predict dam displacement.   

2. Empirical Mode Decomposition 

2.1. EMD Theory 

The effect of different influencing factors in dam displacement data is reflected as 

different frequencies. EMD uses frequency as the judgment criterion to calculate the data 

series. Then, the Intrinsic Mode Function (IMF) with frequency from high to low can be 

obtained [17]. The mid and low frequency IMF components usually reflect the basic 
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characteristics of the data, while the high frequency IMF components generally are noise. 

EMD calculation steps are as follows: 

� (1) Find the extreme points of the data sequence Y(t), connect all the maximum 

points and minimum points with a cubic spline function respectively, then 

obtain the upper envelope Vmax(t) and lower envelope Vmin(t). 
� (2) Calculate the mean value V1(t) of the envelopes. 

V1(t)=[Vmax(t)+Vmin(t)]/2                                                    (1) 

� (3) Calculate the difference D(t) between Y(t) and V1(t). 

D(t)=Y(t)-V1(t)                                                              (2) 

� (4) Judge whether D(t) satisfies the two conditions: (a) The number M with 0 in 

D(t) and the number N with extreme points must satisfy the inequality |M-N|≤1;

(b) The local mean value of Vmax(t) and Vmin(t) both are 0. If D(t) meets the two 

conditions, D(t) is the first IMF component of Y(t) and is expressed as L1. 

Otherwise, D(t) is used as a new original sequence and the above steps are 

repeated until the conditions are satisfied. 

� (5) Calculate residual sequence B1. 

B1=Y(t)-L1                                                             (3) 

� (6) Take B1 as a new data sequence and repeat the above steps until all 

components are decomposed. So far, Y(t) can be expressed as the sum of n Li 

sequences and one residual sequence res. 

Y(ti)= Li
n
i=1 +res.                                                      (4) 

Each IMF has a different frequency. The residual sequence is the trend component 

and represents the average trend. 

2.2. Continuous Mean Square Error Criterion  

The original monitoring data can be decomposed to multiple IMFs. The high frequency 

IMFs mainly contains noise information. The mid and low frequency IMFs mainly 

contains real information. How to determine which high-frequency IMFs contain noise 

is the key to data denoising. Continuous Mean Square Error (CMSE) criterion [18] can 

find the global minimum point of noise energy mutation, so as to find the IMFs mainly 

containing noise. The calculation formula is as follows: 

CMSE(Lk,Lk+1)=
1

n
Lk(ti) -Lk+1(ti+1) 2n

i=1                (k=1,2, ,n-1)               (5) 

k=argmin CMES(Lk,Lk+1)                                            (1 k n)                 (6) 

where: Lk is the kth IMF component, ti is the ith data of IMF component, n is the number 

of IMF components. 
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After the k value is determined, the original data can be reconstructed to obtain the 

data after denoising. 

Lt(t)= IMFi(t)+res.n
i=k+1                                                (7) 

CMSE criterion is to find the kth IMF, so as to determine that the first k high-

frequency IMFs are mainly noisy information. This method has the advantages of simple 

calculation and strong adaptive, and does not need to set the threshold manually. 

3. SARIMA Model 

3.1. SARIMA Model Definition 

Dam displacement monitoring data usually have tendency and periodicity. SARIMA (p, 

d, q) (P, D, Q) model can analyze and predict this kind of data well. It removes non-

stationarity and periodicity of time series by ordinary differencing and seasonal 

differencing. The original time series is transformed into a stationary and aperiodic series. 

Then build an ARMA model for analysis. The model is defined as follows [14]: 

Φp(B)UP(BS)( B)
d
( BS)

D
Yt=Θq(B)VQ(BS)αt                                  (8) 

where: p, d, q, P, D, Q are all integer parameters. d is the ordinary differencing order 

(d≤2), D is the seasonal difference order. B is a hysteresis operator. S is season length.  

αt is a white noise sequence with a mean of 0 and variance of σ2.Φp(B)=1-ϕ
1
B-ϕ

2
B2- -

ϕpBp, this is an autoregressive model with p order. UP(BS)=1-Γ1BS-Γ2BS2- -ΓPBSP, this 

is a seasonal autoregressive model with P order. Θq(B)=1-θ1B-θ2B2- -θqBq, this is a 

moving average model with q order. VQ(BS)=1-H1BS-H2BS2- -HQBSQ, this is a seasonal 

moving average model with Q order. 

3.2. Modeling Steps 

The modeling steps of SARIMA are as follows: 

� (1) Ordinary difference and periodic difference are performed on the data 

sequence to determine the parameters d and D. 

� (2) Autocorrelation and partial autocorrelation analysis are performed on the 

sequence after difference, so as to determine p, q, P and Q. 

� (3) The least square method is used to estimate the parameters of p, q, P and Q 

of the primary several models. 

� (4) The models are screened by AIC, BIC and DW criteria [19]. 

� (5) Test the residual of the model. If the residual has the white noise feature, the 

model meets requirements. Otherwise, the model needs to be re-established. 

� (6) The established model is used for prediction analysis. Root mean square 

error (RMSE), mean absolute error percentage (MAPE) and adjusted mean 

absolute error percentage (AMAPE) indexes are used to evaluate prediction 

performance [20]. 
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4. Application Example 

The maximum dam height of a RCC gravity dam is 113.00 m, the total length of dam 

crest is 308.50 m. It is an annual regulation reservoir. In this paper, the data of horizontal 

displacement monitoring point P8 is selected for analysis. One displacement data is 

measured daily at P8. The data from 2003 to 2007 is used as training data, and the data 

from 2008 is used as test data. P8 is placed in No. 5 dam section, in the middle of the 

riverbed. The data can reflect the general law of dam horizontal displacement. The 

original displacement data of point P8 is shown in Figure 1. 

 

Figure 1. The original displacement data of point P8. 

The data has a slow growth trend and annual periodicity. The trend displacement is 

mainly due to the creep of concrete. The concrete dam has a large rigidity, so its trend 

displacement is small. The periodic displacement is mainly caused by temperature and 

water pressure. In addition, the data has a characteristic with tiny high-frequency 

fluctuations. Considering that the data has the characteristics of different frequencies, 

EMD method is used for data denoising calculation. 

4.1. EMD Denoising Calculation 

The P8 data is decomposed into IMF1-IMF7 and a res. sequence by EMD. The results 

are shown in Figure 2. The frequency of IMF1-IMF4 is high. They contain the main noise 

information. The IMF5-IMF7 have a certain periodicity and are regarded as the 

intermediate frequency components. The res. sequence is a monotone increasing trend 

and is regarded as low frequency. In order to reasonably reduce the noise information 

from the high frequency IMFs, the CMES value should be calculated. The CMES value 

of high frequency IMFs is shown in Figure 3. 

The CMES values of the high frequency IMFs have a minimum point 3. Therefore, 

the first 3 IMFs are considered as noise. After the first 3 IMFs are removed, the remaining 

components are used to data reconstruction. The original data and the reconstructed data 

of P8 are shown in Figure 4. 

The reconstructed data has a high degree of consistency with the original data. 

Compared with the original data, the reconstructed data is smoother. This is because the 

reconstructed data removes the high frequency noise of the original data. The 

reconstructed is closer to the real displacement of P8. Therefore, the reconstructed data 

is used to replace the original data for SARIMA modeling analysis in this paper. 
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Figure 2. The EMD decomposition of original data of point P8. 

  

Figure 3. The CMSE value of IMF1-IMF4. 

 

Figure 4. The original data and the reconstructed data of point P8. 

4.2. SARIMA Modeling 

The reconstructed data also has a certain periodicity and tendency. After a 1-order 

conventional difference and periodic difference, the reconstructed data is converted into 

a stationary time series. So the parameters d and D of SARIMA model are both 1.After 

difference, the autocorrelation coefficient and partial autocorrelation coefficient of the 

reconstructed data end at order 1 and order 5, respectively. Therefore, it can be 

preliminarily determined that P, Q, p and q are 5, 1, 1 and 1 respectively. Several 

SARIMA models are selected and the evaluation indexes of each model are calculated. 

The results are shown in Table 1. 
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Table 1. Evaluation indexes of SARIMA models. 

Model AIC BIC DW R2 
SARIMA (1 1 1) (1 1 1) -11.93 -11.91 0.51 0.9910 

SARIMA (2 1 1) (1 1 1) -13.79 -13.77 1.66 0.9986 

SARIMA (3 1 1) (1 1 1) -14.00 -13.97 2.13 0.9989 

SARIMA (4 1 1) (1 1 1) -14.04 -14.00 1.99 0.9989 

SARIMA (5 1 1) (1 1 1) -14.11 -14.08 1.97 0.9990 

Only the DW statistics of the last two models are between 1.8 and 2.1. It indicates 

that their fitting residual is stationary white noise. So, the two models are meet the 

requirements. The R2 indexes of all 5 models are close to 1. This indicates that there is a 

great correlation between fitting data and reconstructed data. The R2 value of the 

SARIMA (5, 1, 1) (1, 1, 1) model is the largest, indicating that the model has the best 

correlation. In addition, the SARIMA (5, 1, 1) (1, 1, 1) model has the smallest AIC and 

BIC values, which also indicates that the model is optimal. 

To sum up, EMD denoising is performed for original data first. Then, SARIMA 

model is established for the reconstructed data. This is the EMD-SARIMA model. 

Finally, EMD-SARIMA model and SARIMA model are respectively established for 

reconstructed data. The fitting results of the two models are shown in Figure 5. 

 

Figure 5. The fitting results of EMD-SARIMA and SARIMA to reconstructed data. 

There is little difference between the fitting results of the two models. The 

correlation coefficients are both 0.96, and the errors are stationary white noise. That 

shows that the fitting effect of the two models are both good. However, the fitting result 

of EMD-SARIMA model is relatively smooth and there is no high-frequency noise. It is 

more consistent with the real process of dam displacement. The fitting result of SARIMA 

model is affected by the high frequency noise of original data. 

In this paper, EMD-SARIMA model and SARIMA model are used to predict the 

displacement data of P8 in 2008. The results are shown in Figure 6, and the prediction 

indexes are shown in Table 2. 

The two models have high prediction accuracy. Compared with SARIMA model, 

the prediction results of EMD-SARIMA model are more stable, and without high 

frequency noise. This is because the EMD-SARIMA can denoise the original data. 

SARIMA model is trained with data containing high frequency noise, so its prediction 

results also contain high frequency noise. In Table 2, RMSE, MAPE% and AMAPE% 

values of EMD-SARIMA model are all smaller than SARIMA model. It shows that 
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EMD-SARIMA model reduces the influence of noise and improves the prediction 

accuracy.  

 

Figure 6. The predicted results of EMD-SARIMA and SARIMA to original data of point P8. 

Table 2. Prediction indexes of EMD-SARIMA model and SARIMA model. 

Model RMSE MAPE% AMAPE% 
EMD-SARIMA 0.0639 5.5395 5.2857 

SARIMA 0.0688 6.1058 5.5924 

5. Conclusion 

Data noise reduction is of great significance to obtain stable, reliable dam monitoring 

data. It is helpful to improve the accuracy of data analysis. In this paper, EMD-SARIMA 

model and SARIMA model are used to fit and predict the original data of concrete dam 

displacement. The results show that the EMD-SARIMA model can effectively reduce 

the noise of the monitoring data, and the prediction accuracy is improved. While the 

SARIMA model cannot exclude the influence of noise in data, and its prediction results 

still contain noise 

There are many kinds of dam monitoring data, and the variation law is not limited 

to trend and periodicity. Therefore, in order to adapt to a variety of data analysis, it is 

necessary to study a prediction model with universal applicability. In addition, the noise 

frequency of different instruments is different, and the calculation results of different 

noise reduction algorithms are also different. In order to effectively denoise the 

monitoring data, it is necessary to further study the denoising standards and methods. 
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